满分5 > 高中数学试题 >

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)...

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
(Ⅰ)利用条件的到两个关于m、n的方程,求出m、n的值,再找函数y=f(x)的导函数大于0和小于0对应的区间即可. (Ⅱ)利用(Ⅰ)的结论,分情况讨论区间(a-1,a+1)和单调区间的位置关系再得结论. 【解析】 (Ⅰ)由函数f(x)图象过点(-1,-6),得m-n=-3,① 由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n, 则g(x)=f′(x)+6x=3x2+(2m+6)x+n; 而g(x)图象关于y轴对称,所以-=0,所以m=-3, 代入①得n=0. 于是f′(x)=3x2-6x=3x(x-2). 由f′(x)>得x>2或x<0, 故f(x)的单调递增区间是(-∞,0),(2,+∞); 由f′(x)<0得0<x<2, 故f(x)的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f′(x)=3x(x-2), 令f′(x)=0得x=0或x=2. 当x变化时,f′(x)、f(x)的变化情况如下表: 由此可得: 当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值; 当a=1时,f(x)在(a-1,a+1)内无极值; 当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值; 当a≥3时,f(x)在(a-1,a+1)内无极值. 综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.
复制答案
考点分析:
相关试题推荐
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
查看答案
已知manfen5.com 满分网. 
(1)求函数f(x)的周期及增区间;
(2)若manfen5.com 满分网,求x的取值集合.
查看答案
已知{an}为等差数列,且a3=-6,a6=0.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的前n项和公式.
查看答案
设函数manfen5.com 满分网
(1)求函数f(x)的值域;
(2)设A,B,C为△ABC的三个内角,若manfen5.com 满分网manfen5.com 满分网,且C为锐角,求sinA的值.
查看答案
设集合A={x||x-a|<2},manfen5.com 满分网,若A⊆B.求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.