满分5 > 高中数学试题 >

已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合. (1)求...

已知椭圆C的中心在坐标原点,离心率manfen5.com 满分网,且其中一个焦点与抛物线manfen5.com 满分网的焦点重合.
(1)求椭圆C的方程;
(2)过点S(manfen5.com 满分网,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
(1)先设处椭圆的标准方程,根据离心率求的a和c的关系,进而根据抛物线的焦点求得c,进而求得a,则b可得,进而求的椭圆的标准方程. (2)若直线l与x轴重合,则以AB为直径的圆是x2+y2=1,若直线l垂直于x轴,则以AB为直径的圆是(x+)2+y2=.联立两个圆的方程求得其交点的坐标,推断两圆相切,进而可判断因此所求的点T如果存在,只能是这个切点.证明时先看直线l垂直于x轴时,以AB为直径的圆过点T(1,0).再看直线l不垂直于x轴,可设出直线方程,与圆方程联立消去y,记点A(x1,y1),B(x2,y2),根据伟大定理求得x1+x2和x1x2的表达式,代入•的表达式中,求得•=0,进而推断TA⊥TB,即以AB为直径的圆恒过点T(1,0). 【解析】 (Ⅰ)设椭圆的方程为,离心率,,抛物线的焦点为(0,1),所以,椭圆C的方程是x2+=1 (Ⅱ)若直线l与x轴重合,则以AB为直径的圆是x2+y2=1,若直线l垂直于x轴,则以AB为直径的圆是(x+)2+y2=. 由解得即两圆相切于点(1,0). 因此所求的点T如果存在,只能是(1,0). 事实上,点T(1,0)就是所求的点.证明如下: 当直线l垂直于x轴时,以AB为直径的圆过点T(1,0). 若直线l不垂直于x轴,可设直线l:y=k(x+). 由即(k2+2)x2+k2x+k2-2=0. 记点A(x1,y1),B(x2,y2),则 又因为=(x1-1,y1),=(x2-1,y2),•=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+)(x2+) =(k2+1)x1x2+(k2-1)(x1+x2)+k2+1 =(k2+1)+(k2-1)++1=0, 所以TA⊥TB,即以AB为直径的圆恒过点T(1,0). 所以在坐标平面上存在一个定点T(1,0)满足条件
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn=2an-2n+1+2(n∈N*).
(Ⅰ)设manfen5.com 满分网,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令manfen5.com 满分网,Tn=c1+c2+…+cn,求证:Tn≥1(n∈N*).
查看答案
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且平面DA1C⊥平面AA1C1C.
(1)求证:D点为棱BB1的中点;
(2)若二面角A-A1D-C的平面角为60°,求manfen5.com 满分网的值.
查看答案
某商店销售甲、乙、丙三种日用品,相关信息如下列两表所示:
表(1)
类型
单价(元/件)201510
表(2)
类型
件数343
某人随机从这10件商品中购买2件,假设每件商品被此人买走的概率相等,记此人买这两件商品所付出的总金额为ξ(元).
(1)求此人所付出的金额不超过30元的概率;
(2)求随机变量ξ的分布列和数学期望.
查看答案
已知:函数manfen5.com 满分网
(1)求函数f(x)的最大值及此时x的值;
(2)在△ABC中,a,b,c分别为内角A,B,C所对的边,且对f(x)定义域中的任意的x都有f(x)≤f(A),若a=2,求manfen5.com 满分网的最大值.
查看答案
已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长manfen5.com 满分网,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,有以下判断,
(1)PE长的最大值是9;(2)三棱锥P-EBC的最大值是manfen5.com 满分网;(3)存在过点E的平面,截球O的截面面积是3π;(4)三棱锥P-AEC1体积的最大值是20.
正确的是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.