满分5 > 高中数学试题 >

数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列, (1)求数...

数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列,
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列manfen5.com 满分网的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值.
(1)根据S3,S2,S4成等差数列建立等式关系,然后可求出公比q,根据等比数列的性质求出通项公式即可; (2)先求出数列bn的通项公式,然后利用裂项求和法求出数列的前n项和Tn,将λ分离出来得λ≥,利用基本不等式求出不等式右侧的最大值即可求出所求. 【解析】 (1)∵S3,S2,S4成等差数列 ∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4 所以a4=-2a3 ∴q=-2 an=a1qn-1=(-2)n+1 (2)bn=log2|an|=log22n+1=n+1 = Tn=(-)+(-)+…+()=- λ≥==× 因为n+≥4,所以×≤ 所以λ最小值为
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.
查看答案
袋中装有大小相等的3个白球,2个红球和n个黑球,现从中任取2个球,每取得一个白球得1分,每取得一个红球得2分,每取得一个黑球0分,用ξ表示所得分数,已知得0分的概率为manfen5.com 满分网
(Ⅰ)袋中黑球的个数n;
(2)ξ的概率分布列及数学期望Eξ.
(3)求在取得两个球中有一个是红球的条件下,求另一个是黑球的概率.
查看答案
已知函数manfen5.com 满分网的最小正周期为3π,当x∈[0,π]时,函数f(x)的最小值为0.
(1)求函数f(x)的表达式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.
查看答案
如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=   
manfen5.com 满分网 查看答案
身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有    种. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.