满分5 > 高中数学试题 >

已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n...

已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两实根,且a1=1.
(1)求证:数列manfen5.com 满分网是等比数列;
(2)设Sn是数列{an}的前n项和,求Sn
(3)问是否存在常数λ,使得bn>λSn对∀n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由.
(1)先根据an,an+1是关于x的方程x2-2n•x+bn=0(n∈N*)的两实根,得到:,再计算的值,从而得出数列是首项为,公比为-1的等比数列; (2)由(1)得,再利用等比数列的求和公式即可求Sn; (3)由(2)得,要使bn>λSn,对∀n∈N*都成立,下面对n进行分类讨论:①当n为正奇数时,②当n为正偶数时,分别求得λ的取值范围,最后综上所述得到,存在常数λ,使得bn>λSn对∀n∈N*都成立,λ的取值范围. 【解析】 (1)证明:∵an,an+1是关于x的方程x2-2n•x+bn=0(n∈N*)的两实根, ∴(2分) ∵. 故数列是首项为,公比为-1的等比数列.(4分) (2)由(1)得, 即∴=.(8分) (3)由(2)得 要使bn>λSn,对∀n∈N*都成立, 即(*)(11分) ①当n为正奇数时,由(*)式得: 即 ∵2n+1-1>0,∴对任意正奇数n都成立, 故为奇数)的最小值为1. ∴λ<1.(13分) ②当n为正偶数时,由(*)式得:,即 ∵2n-1>0,∴对任意正偶数n都成立, 故为偶数)的最小值为. ∴.(15分) 综上所述得,存在常数λ,使得bn>λSn对∀n∈N*都成立,λ的取值范围为(-∞,1).(16分)
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD是矩形,PA⊥面ABCD,其中AB=3,PA=4.
(1)当manfen5.com 满分网,且在PD上存在一点E,使得BE⊥CE时,求二面角E-BC-A的平面角的余弦值;
(2)若在PD上存在一点E,使得BE⊥CE,试求AD的取值范围.

manfen5.com 满分网 查看答案
某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.
(1) 若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?
(2) 若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求Eξ的值.
查看答案
已知函数manfen5.com 满分网manfen5.com 满分网
(1)在所给的坐标纸上作出函数y=f(x),x∈[-2,14]的图象(不要求作图过程)
(2)令g(x)=f(x)+f(-x),x∈R,求函数y=g(x)与x轴交点的横坐标.
查看答案
已知o为平面直角坐标系的原点,F2为双曲线manfen5.com 满分网的右焦点,若该双曲线的右支上存在一点使得|PO|=|PF2|,则该双曲线离心率的范围是    查看答案
已知曲线C:x2+y2=m恰有三个点到直线12x+5y+26=0距离为1,则m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.