满分5 > 高中数学试题 >

如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B...

manfen5.com 满分网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足manfen5.com 满分网,求点M的轨迹C;
(Ⅱ)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
(I)对抛物线方程进行求导,求得直线l的斜率,设出M的坐标,利用求得x和y的关系. (II)设l'方程代入椭圆的方程,消去y,利用判别式大于0求得k的范围,设出E,F的坐标,利用韦达定理表示出x1+x2和x1x2,令,则可推断出,进而表示出(x1-2)•(x2-2)和(x1-2)+(x2-2),最后求得k和λ的关系,利用k的范围求得λ的范围. 【解析】 (I)由x2=4y得, ∴. ∴直线l的斜率为y'|x=2=1, 故l的方程为y=x-1,∴点A的坐标为(1,0). 设M(x,y),则=(1,0),,, 由得, 整理,得. ∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆. (II)如图,由题意知l'的斜率存在且不为零, 设l'方程为y=k(x-2)(k≠0)=1 ①, 将 ①代入,整理,得 (2k2+1)x2-8k2•x+(8k2-2)=0,由△>0得. 设E(x1,y1)、F(x2,y2),则,② 令,则, 由此可得,,且0<λ<1. 由 ②知, . ∴, 即. ∵,∴, 解得. 又∵0<λ<1,∴, ∴△OBE与△OBF面积之比的取值范围是(,1).
复制答案
考点分析:
相关试题推荐
已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两实根,且a1=1.
(1)求证:数列manfen5.com 满分网是等比数列;
(2)设Sn是数列{an}的前n项和,求Sn
(3)问是否存在常数λ,使得bn>λSn对∀n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由.
查看答案
如图,四边形ABCD是矩形,PA⊥面ABCD,其中AB=3,PA=4.
(1)当manfen5.com 满分网,且在PD上存在一点E,使得BE⊥CE时,求二面角E-BC-A的平面角的余弦值;
(2)若在PD上存在一点E,使得BE⊥CE,试求AD的取值范围.

manfen5.com 满分网 查看答案
某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.
(1) 若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?
(2) 若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求Eξ的值.
查看答案
已知函数manfen5.com 满分网manfen5.com 满分网
(1)在所给的坐标纸上作出函数y=f(x),x∈[-2,14]的图象(不要求作图过程)
(2)令g(x)=f(x)+f(-x),x∈R,求函数y=g(x)与x轴交点的横坐标.
查看答案
已知o为平面直角坐标系的原点,F2为双曲线manfen5.com 满分网的右焦点,若该双曲线的右支上存在一点使得|PO|=|PF2|,则该双曲线离心率的范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.