满分5 > 高中数学试题 >

我们知道,直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置...

我们知道,直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面的问题.
(1)设F1、F2是椭圆M:manfen5.com 满分网的两个焦点,点F1、F2到直线l:manfen5.com 满分网manfen5.com 满分网的距离分别为d1、d2,试求d1•d2的值,并判断直线l与椭圆M的位置关系.
(2)设F1、F2是椭圆M:manfen5.com 满分网(a>b>0)的两个焦点,点F1、F2到直线l:mx+ny+p=0(m、n不同时为零)的距离分别为d1、d2,且直线l与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的相交、相离位置关系的充要条件(不必证明).
(1)利用点到直线的距离公式分别计算d1、d2,代入d1•d2化简,可以求出d1•d2的值,再通过直线L与椭圆方程消去y得到关于x的方程,可以求出根的差别式大于零,得到直线L与椭圆M有两个交点,是相交的位置关系; (2)将直线方程与椭圆方程消去y,得到关于x的方程.再利用根的判别式可得△=0,从而p2=a2m2+b2n2,将其代入d1•d2的表达式化简可得d1•d2=b2; (3)根据(2)运算得启发:直线L与椭圆M相交的充要条件为:d1d2<b2;直线L与椭圆M相离的充要条件为:d1d2>b2. 【解析】 (1)∵F1(-4,0),F2(4,0)到直线的距离分别为 ∴ ∴ ∴直线l与椭圆C相交 (2)F1(-c,0),F2(c,0),直线l与椭圆M相切,点F1、F2在直线l的同侧 又 ∴△=0 ∴p2=b2n2+a2m2 ∴ (3)设F1、F2是椭圆M:(a>b>0)的两个焦点,点F1、F2到直线l:mx+ny+p=0(m、n不同时为零)的距离分别为d1、d2,且点F1、F2在直线l的同侧,那么,直线l与椭圆M相交的充要条件为:d1•d2<b2;直线l与椭圆M相离的充要条件为:d1•d2>b2;
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)求f(x)的值域
(2)设函数g(x)=ax-2,x∈[-2,2],对于任意x1∈[-2,2],总存在x∈[-2,2],使得g(x)=f(x1)成立,求实数a的取值范围.
查看答案
某商店采用分期付款的方式促销一款价格每台为6000元的电脑.商店规定,购买时先支付货款的manfen5.com 满分网,剩余部分在三年内按每月底等额还款的方式支付欠款,且结算欠款的利息.已知欠款的月利率为0.5%.
(1)到第一个月底,货主在第一次还款之前,他欠商店多少元?
(2)假设货主每月还商店a元,写出在第n(n=1,2,…36)个月末还款后,货主对商店欠款数的表达式.
(3)每月的还款额为多少元(精确到0.01)?
查看答案
如图,圆锥的顶点是S,底面中心为O.OC是与底面直径AB垂直的一条半径,D是母线SC的中点.
(1)求证:BC与SA不可能垂直;
(2)设圆锥的高为4,异面直线AD与BC所成角的余弦值为manfen5.com 满分网,求圆锥的体积.

manfen5.com 满分网 查看答案
在平面直角坐标系中,点manfen5.com 满分网在角α的终边上,点Q(sin2θ,-1)在角β的终边上,且manfen5.com 满分网
(1)求cos2θ;
(2)求sin(α+β)的值.
查看答案
对于任意正整数n,定义n得双阶乘“n!!”如下:当n为偶数时,n!!=n(n-2)(n-4)…6•4•2;当n为奇数时,n!!=n(n-2)(n-4)…5•3•1,现有以下四个命题:
①(2011!!)(2010!!)=2011!
②2010!!=21005•1005!
③2010!!的个位数是0 
④2011!!的个位数是5.
其中正确的命题的个数为( )
A.1个
B.2个
C.3个
D.4个
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.