满分5 > 高中数学试题 >

在△ABC中,满足:,M是BC的中点. (I)若,求向量.与向量的夹角的余弦值;...

在△ABC中,满足:manfen5.com 满分网,M是BC的中点.
(I)若manfen5.com 满分网,求向量manfen5.com 满分网.与向量manfen5.com 满分网的夹角的余弦值;
(II)若O是线段AM上任意一点,且manfen5.com 满分网,求manfen5.com 满分网的最小值;
(3)若点P是∠BAC内一点,且manfen5.com 满分网,求manfen5.com 满分网的最小值.
(I)利用向量的数量积公式得到,利用向量的数量积公式展开,求出向量.与向量的夹角的余弦值; (II)通过解三角形求出AM的长,设,则,利用向量的平行四边形法则得到而 ,利用向量的数量积公式将表示成关于x的二次函数,通过求二次函数的最值求出最小值. (III)设∠CAP=α,将已知条件利用向量的数量积公式表示成关于α的三角函数,将平方转化为关于α的三角函数,然后利用基本不等式求出其最小值. 【解析】 (I)设向量.与向量的夹角为θ ∴, 令=a ∴ (II)∵=, ∴ 设,则, 而 ∴ =-2x(1-x)=2x2-2x= 当且仅当时,的最小值是 (III)设∠CAP=α ∵ ∴ ∴ 当且仅当
复制答案
考点分析:
相关试题推荐
已知双曲线C:manfen5.com 满分网=1(a>0,b>0)的离心率为manfen5.com 满分网,右准线方程为x=manfen5.com 满分网
(I)求双曲线C的方程;
(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x,y)(xy≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.
查看答案
已知正六棱柱ABCDEF-A1B1C1D1E1F1的所有棱长均为2,G为AF的中点.
(Ⅰ)求证:F1G∥平面BB1E1E;
(Ⅱ)求证:平面F1AE⊥平面DEE1D1
(Ⅲ)求异面直线EG与F1A所成角的余弦值.

manfen5.com 满分网 查看答案
低碳生活成为未来的主流.某市为此制作了两则公益广告:
(一)80部手机,一年就会增加一吨二氧化碳的排放.…
(二)人们在享受汽车带来的便捷与舒适的同时,却不得不呼吸汽车排放的尾气.…活动组织者为了解市民对这两则广告的宣传效果,随机对10-60岁的人群抽查了n人,统计结果如下图表:
广告一广告二
回答
正确
人数
占本
组人
频率
回答
正确
人数
占本
组人
频率
[10,20)900.545a
[20,30)2250.75k0.8
[30,40)b0.92520.6
[40,50)160c120d
[50,60)10efg
(1)分别写出n,a,c,d的值;
(2)若以表中的频率近似值看作各年龄组正确回答广告内容的概率,规定正确回答广告一的内容得20元,广告二的内容得30元.组织者随机请一家庭的两成员(大人45岁,孩子17岁)回答两广告内容,求该家庭获得奖金的期望(各人之间,两广告之间,对能否正确回答,均无影响).

manfen5.com 满分网 查看答案
已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(C,0)
(1)若c=5,求sin∠A的值;
(2)若∠A是钝角,求c的取值范围.
查看答案
manfen5.com 满分网如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.