满分5 > 高中数学试题 >

从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85...

从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是( )
A.0.62
B.0.38
C.0.7
D.0.68
本题是一个频率分布问题,根据所给的,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,写出质量在[4.8,4.85)g范围内的概率,用1去减已知的概率,得到结果. 【解析】 设一个羽毛球的质量为ξg,则根据概率之和是1可以得到 P(ξ<4.8)+P(4.8≤ξ<4.85)+P(ξ≥4.85)=1. ∴P(4.8≤ξ<4.85)=1-0.3-0.32=0.38. 故选B.
复制答案
考点分析:
相关试题推荐
证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:manfen5.com 满分网
查看答案
(选做题)
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+manfen5.com 满分网)=manfen5.com 满分网,圆C的参数方程为manfen5.com 满分网,(θ为参数,r>0)
(I)求圆心C的极坐标;
(II)当r为何值时,圆C上的点到直线l的最大距离为3.
查看答案
manfen5.com 满分网如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.
查看答案
已知函数f(x)=manfen5.com 满分网(m,n∈R)在x=1处取得极值2.
(I)求f(x)的解析式;
(II)设函数g(x)=x2-2ax+a,若对于任意的x1∈R,总存在x2∈[-1,1],使得g(x2)≤f(x1),求实数a的取值范围.
查看答案
设椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左,右焦点分别为F1,F2,离心率为e=manfen5.com 满分网,以F1为圆心,|F1F2|为半径的圆与直线x-manfen5.com 满分网y-3=0相切.
(I)求椭圆C的方程;
(II)过点S(0,-manfen5.com 满分网)且斜率为k的直线交椭圆C于点A,B,证明无论k取何值,以AB为直径的圆恒过定点D(0,1).
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.