(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;
(Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设bn=log3a1+log3a2+…+log3an,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到bn的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n项和.
【解析】
(Ⅰ)设数列{an}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.
由条件可知各项均为正数,故q=.
由2a1+3a2=1得2a1+3a1q=1,所以a1=.
故数列{an}的通项式为an=.
(Ⅱ)bn=++…+=-(1+2+…+n)=-,
故=-=-2(-)
则++…+=-2[(1-)+(-)+…+(-)]=-,
所以数列{}的前n项和为-.