满分5 > 高中数学试题 >

下列命题错误的是( ) A.对于命题p:∃x∈R,使得x2+x+1<0,则-p为...

下列命题错误的是( )
A.对于命题p:∃x∈R,使得x2+x+1<0,则-p为:∀x∈R,均有x2+x+1≥0
B.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
C.若p∧q为假命题,则p,q均为假命题
D.“x>2”是“x2-3x+2>0”的充分不必要条件
根据命题:∃x∈R,使得x2+x+1<0是特称命题,其否定为全称命题,即:∀x∈R,均有x2+x+1≥0,从而得到答案.故A对; 根据逆否命题的写法进行判断B即可; P∧q为假命题⇒P、q不均为真命题.故C错误; 利用充分不必要条件的判定方法即可进行D的判定. 【解析】 ∵命题:∃x∈R,使得x2+x+1<0是特称命题 ∴否定命题为:∀x∈R,均有x2+x+1≥0,从而得到答案.故A对 B命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”故②正确; C:若P∧q为假命题,则P、q不均为真命题.故③错误; D“x>2”⇒“x2-3x+2>0”,反之不成立,“x>2”是“x2-3x+2>0”的充分不必要条件, 故选C.
复制答案
考点分析:
相关试题推荐
已知复数z+i,在映射f下的象是manfen5.com 满分网,则-1+2i的原象为( )
A.-1+3i
B.2-i
C.-2+i
D.2
查看答案
已知全集U=R,集合A={x|x2-2x>0},B={x|y=lg(x-1)},则(CuA)∩B等于( )
A.{x|x>2或x<0}
B.{x|1<x<2}
C.{x|1≤x≤2}
D.{x|1<x≤2}
查看答案
设g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常数,且0<λ<1.
(1)求函数f(x)的极值;
(2)证明:对任意正数a,存在正数x,使不等式manfen5.com 满分网成立;
(3)设manfen5.com 满分网,且λ12=1,证明:对任意正数a1,a2都有:manfen5.com 满分网
查看答案
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*
(I)证明数列{an+1}是等比数列;
(II)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f'(1)并比较2f'(1)与23n2-13n的大小.
查看答案
设椭圆manfen5.com 满分网的左右顶点分别为A(-2,0),B(2,0),离心率e=manfen5.com 满分网.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且|QP|=|PC|.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线AC(C点不同于A,B)与直线x=2交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.