满分5 > 高中数学试题 >

已知椭圆M的对称轴为坐标轴,且抛物线的焦点是椭圆M的一个焦点,又点A在椭圆M上....

已知椭圆M的对称轴为坐标轴,且抛物线manfen5.com 满分网的焦点是椭圆M的一个焦点,又点Amanfen5.com 满分网在椭圆M上.
(Ⅰ)求椭圆M的方程;
(Ⅱ)已知直线l的方向向量为manfen5.com 满分网,若直线l与椭圆M交于B、C两点,求△ABC面积的最大值.
(Ⅰ)先求出抛物线的焦点坐标,进而设出椭圆方程,再把点A代入方程求出a,即可求椭圆M的方程; (Ⅱ)先利用直线l的方向向量为,求出直线的斜率,设出直线方程;再与椭圆方程联立,求出B、C两点的坐标与m的关系;再求出B、C两点之间的线段长以及点A到BC的距离,代入△ABC面积的表达式,再结合不等式的有关知识求出△ABC面积的最大值即可. 【解析】 (Ⅰ)由已知抛物线的焦点为,故设椭圆方程为. 将点代入方程得,整理得a4-5a2+4=0, 解得a2=4或a2=1(舍). 故所求椭圆方程为.(6分) (Ⅱ)设直线BC的方程为,设B(x1,y1),C(x2,y2), 代入椭圆方程并化简得, 由△=8m2-16(m2-4)=8(8-m2)>0,可得m2<8.(*) 由, 故. 又点A到BC的距离为, 故, 当且仅当2m2=16-2m2,即m=±2时取等号(满足*式) 所以△ABC面积的最大值为.(12分)
复制答案
考点分析:
相关试题推荐
如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

manfen5.com 满分网 查看答案
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,
得到如下的列联表:
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中抽到随机抽取1人为优秀的概率为manfen5.com 满分网
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=1.
(Ⅰ)求证:A=B;
(Ⅱ)求边长c的值;
(Ⅲ)若|manfen5.com 满分网+manfen5.com 满分网|=manfen5.com 满分网,求△ABC的面积.
查看答案
在数列{an}中,若点(n,an)在经过点(5,3)的定直线l上,则数列{an}的前9项和S9=    查看答案
某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h的汽车数量为    辆.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.