满分5 > 高中数学试题 >

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已...

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角α=manfen5.com 满分网
(I)写出直线l的参数方程;
(II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
(I)根据直线经过的点的坐标及直线的倾斜角,求出直线的参数方程. (II) 设A,B对应的参数为t1和t2,以直线l的参数方程代入圆的方程整理得到 t2+(+1)t-2=0,由|PA|•|PB|=|t1t2|求出点P到A、B两点的距离之积. 【解析】 (I)直线的参数方程是. (Ⅱ)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t2, 圆化为直角坐标系的方程   x2+y2=4, 以直线l的参数方程代入圆的方程整理得到 t2+(+1)t-2=0  ①, 因为t1和t2是方程①的解,从而 t1t2=-2. 所以,|PA|•|PB|=|t1t2|=|-2|=2.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网,其中a为常数.
(1)证明:对任意a∈R,y=f(x)的图象恒过定点;
(2)当a=-1时,判断函数y=f(x)是否存在极值?若存在,求出极值;若不存在,说明理由;
(3)若对任意a∈(0,m]时,y=f(x)恒为定义域上的增函数,求m的最大值.
查看答案
已知椭圆M的对称轴为坐标轴,且抛物线manfen5.com 满分网的焦点是椭圆M的一个焦点,又点Amanfen5.com 满分网在椭圆M上.
(Ⅰ)求椭圆M的方程;
(Ⅱ)已知直线l的方向向量为manfen5.com 满分网,若直线l与椭圆M交于B、C两点,求△ABC面积的最大值.
查看答案
如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

manfen5.com 满分网 查看答案
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,
得到如下的列联表:
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中抽到随机抽取1人为优秀的概率为manfen5.com 满分网
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.