满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)...

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列manfen5.com 满分网为等差数列?若存在,求出λ的值;若不存在,则说明理由.
(Ⅲ)求证:manfen5.com 满分网
(Ⅰ)利用数列{an}的前n项Sn与an的关系通过相减的思想得到数列相邻项之间的关系式是解决本题的关键,证明出该数列是特殊数列,进而确定出其通项公式; (Ⅱ)解法一:确定出数列{an}的前n项和为Sn的表达式是解决本题的关键,数列为等差数列首先保证其前3项满足等差数列的关系,得出关于λ的方程,从而确定出λ的值; 解法二:先确定出数列{an}的前n项和为Sn的表达式,利用数列为等差数列的通项公式的特征寻找关于λ的方程,通过求解方程确定出λ的值; (Ⅲ)对该和式的通项进行转化是解决本题的关键,用到了裂项求和的思想,求出该和式,利用函数的单调性完成该不等式的证明. 【解析】 (Ⅰ)由题意可得:2an+1+Sn-2=0.①n≥2时,2an+Sn-1-2=0.② ①─②得, ∵. ∴{an}是首项为1,公比为的等比数列,∴. (Ⅱ)解法一:∵. 若为等差数列, 则成等差数列, 2, 得λ=2. 又λ=2时,,显然{2n+2}成等差数列, 故存在实数λ=2,使得数列成等差数列. 解法二:∵. ∴. 欲使成等差数列,只须λ-2=0即λ=2便可. 故存在实数λ=2,使得数列成等差数列. (Ⅲ)证明:∵ = ∴ =… == 又函数=在x∈[1,+∞)上为增函数, ∴, ∴,.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,左、右焦点分别为F1、F2,点manfen5.com 满分网满足F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)如果圆E:manfen5.com 满分网被椭圆C所覆盖,求圆的半径r的最大值.
查看答案
已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(I)求函数y=f(x)的表达式;
(II)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数g(x)=f(x-m)+4m(m>0)在区间[m-3,n]上的值域为[-4,16],试求m、n应满足的条件.
查看答案
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)证明:AD⊥D1F;
(2)证明:面AED⊥面A1FD1
(3)设manfen5.com 满分网

manfen5.com 满分网 查看答案
从某学校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160).第二组[160,165);…第八组[190,195],图是按上述分组方法得到的条形图.

manfen5.com 满分网
(1)根据已知条件填写下面表格:
组 别12345678
样本数
(2)估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数;
(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
查看答案
已知manfen5.com 满分网
(Ⅰ)求tanx的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.