甲、乙两人玩一种游戏:甲从放有x个红球、y个白球、z个(x,y,z≥1,x+y+z=10)黄球的箱子中任取一球,乙从放有5个红球、3个白球、2个黄球的箱子中任取一球. 规定:当两球同色时为甲胜,当两球异色时为乙胜.
(1)用x,y,z表示甲胜的概率;
(2)假设甲胜时甲取红球、白球、黄球的得分分别为1分、2分、3分,甲负时得0分,求甲得分数ξ的概率分布,并求E(ξ)最小时的x,y,z的值.
考点分析:
相关试题推荐
如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置;若不存在,说明理由.
查看答案
(选修4-4:不等式选讲)已知关于x的不等式:|2x-m|≤1的整数解有且仅有一个值为2.
(1)求整数m的值;
(2)在(1)的条件下,解不等式:|x-1|+|x-3|≥m.
查看答案
(选修4-3:坐标系与参数方程)已知圆的极坐标方程为:
.
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
查看答案
(选修4-2:矩阵与变换)设 M=
,N=
,试求曲线y=sinx在矩阵MN变换下的曲线方程.
查看答案
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE
2=EF•EC.
(Ⅰ)求证:∠P=∠EDF;
(Ⅱ)求证:CE•EB=EF•EP.
查看答案