满分5 > 高中数学试题 >

设双曲线C:=1(a>0)与直线l:x+y=1相交于两个不同的点A、B. (I)...

设双曲线C:manfen5.com 满分网=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且manfen5.com 满分网.求a的值.
(I)把直线与双曲线方程联立消去y,利用判别式大于0和方程二次项系数不等于0求得a的范围,进而利用a和c的关系,用a表示出离心率,根据a的范围确定离心率的范围. (II)设出A,B,P的坐标,根据求得x1和x2的关系式,利用韦达定理表示出x1+x2和x1x2,联立方程求得a. 【解析】 (I)由C与l相交于两个不同的点,故知方程组 有两个不同的实数解.消去y并整理得 (1-a2)x2+2a2x-2a2=0.① 所以 解得0<a<且a≠1. 双曲线的离心率 . ∵且a≠1, ∴且 即离心率e的取值范围为. (II)设A(x1,y1),B(x2,y2),P(0,1) ∵, ∴. 由此得. 由于x1和x2都是方程①的根,且1-a2≠0, 所以. x1•x2=. 消去x2,得 由a>0,所以a=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.
查看答案
如图,椭圆manfen5.com 满分网=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=manfen5.com 满分网
(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
P:函数y=logax在(0,+∞)内单调递减;Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果P或Q为真,P且Q为假,求a的取值范围.
查看答案
连接抛物线上任意四点组成的四边形可能是    (填写所有正确选项的序号).
①菱形②有3条边相等的四边形③梯形
④平行四边形⑤有一组对角相等的四边形 查看答案
在如程序框图中输出的结果是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.