满分5 > 高中数学试题 >

已知点A(2,0)关于直线l1:x+y-4=0的对称点为A1,圆C:(x-m)2...

已知点A(2,0)关于直线l1:x+y-4=0的对称点为A1,圆C:(x-m)2+(y-n)2=4(n>0)经过点A和A1,且与过点B(0,-2manfen5.com 满分网)的直线l2相切.
(1)求圆C的方程;(2)求直线l2的方程.
(1)由点A和A1均在圆C上且关于直线l1对称,得到圆心在直线l1上,由圆的方程找出圆心坐标,代入直线l1,得到关于m与n的方程,然后把点A的坐标代入到圆的方程中,得到关于m与n的另一个方程,联立两方程即可求出m与n的值,确定出圆C的方程; (2)当直线l2的斜率存在时,设出直线l2的方程,由直线与圆相切时圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于k的方程,求出方程的解即可得到k的值,从而确定出直线l2的方程;当直线l2的斜率不存在时,x=0显然满足题意,综上,得到所有满足题意得直线l2的方程. 【解析】 (1)∵点A和A1均在圆C上且关于直线l1对称, ∴圆心在直线l1上,由圆C的方程找出圆心C(m,n), 把圆心坐标直线l1,点A代入圆C方程得: ,解得或(与n>0矛盾,舍去), 则圆C的方程为:(x-2)2+(y-2)2=4; (2)当直线l2的斜率存在时, 设直线l2的方程为y=kx-2,由(1)得到圆心坐标为(2,2),半径r=2, 根据题意得:圆心到直线的距离d==r=2,解得k=1, 所以直线l2的方程为y=x-2; 当直线l2的斜率不存在时, 易得另一条切线为x=0, 综上,直线l2的方程为y=x-2或x=0.
复制答案
考点分析:
相关试题推荐
已知命题p:∃x∈R,使得x2-2ax+2a2-5a+4=0,命题q:∀x∈[0,1],都有(a2-4a+3)x-3<0.若“p或q”为真,“p且q”为假,求实数a的取值范围.
查看答案
某高中地处县城,学校规定家到学校的路程在10里以内的学生可以走读,因交通便利,所以走读生人数很多.该校学生会先后5次对走读生的午休情况作了统计,得到如下资料:
①若把家到学校的距离分为五个区间:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),则调查数据表明午休的走读生分布在各个区间内的频率相对稳定,得到了如图所示的频率分布直方图;
②走读生是否午休与下午开始上课的时间有着密切的关系.下表是根据5次调查数据得到的下午开始上课时间与平均每天午休的走读生人数的统计表.
下午开始上课时间1:301:401:502:002:10
平均每天午休人数250350500650750
(Ⅰ)若随机地调查一位午休的走读生,其家到学校的路程(单位:里)在[2,6)的概率是多少?
(Ⅱ)如果把下午开始上课时间1:30作为横坐标0,然后上课时间每推迟10分钟,横坐标x增加1,并以平均每天午休人数作为纵坐标y,试列出x与y的统计表,并根据表中的数据求平均每天午休人数manfen5.com 满分网与上课时间x之间的线性回归方程manfen5.com 满分网=bx+a;
(Ⅲ)预测当下午上课时间推迟到2:20时,家距学校的路程在6里路以上的走读生中约有多少人午休?


manfen5.com 满分网 查看答案
有5张卡片,上面分别标有数字0,1,2,3,4.求:
(Ⅰ)从中任取二张卡片,二张卡片上的数字之和等于5的概率;
(Ⅱ)从中任取2次卡片,每次取1张,第一次取出卡片,记下数字后放回,再取第二次.两次取出的卡片上的数字之和恰好等于5的概率.
查看答案
已知抛物线y2=2px(p>0),过定点T(p,0)作两条互相垂直的直线l1,l2,若l1与抛物线交与P、Q,若l2与抛物线交与M、N,l1的斜率为k.某同学正确地已求出了弦PQ的中点为manfen5.com 满分网,请写出弦MN的中点    查看答案
连续掷两次骰子得到的点数分别为m,n,则直线y=manfen5.com 满分网x与圆x2+(y-3)2=1相交的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.