满分5 > 高中数学试题 >

本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用...

本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.本题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解. 【解析】 设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟, 总收益为z元,由题意得 目标函数为z=3000x+2000y. 二元一次不等式组等价于 作出二元一次不等式组所表示的平面区域,即可行域. 如图,作直线l:3000x+2000y=0,即3x+2y=0. 平移直线l,从图中可知,当直线l过M点时,目标函数取得最大值. 联立解得x=100,y=200. ∴点M的坐标为(100,200). ∴zmax=3000x+2000y=700000(元) 答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角.
(1)求证:平面B1AC⊥平面ABB1A1
(2)求二面角B-B1C-A的正切值.

manfen5.com 满分网 查看答案
等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=bx+r(b>0)且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记bn=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若manfen5.com 满分网
(Ⅰ)求A; 
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
已知双曲线manfen5.com 满分网的左、右焦点分别为F1、F2,P为双曲线右支上任意一点,当manfen5.com 满分网取得最小值时,该双曲线离心率的最大值为    查看答案
等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26.记Tn=manfen5.com 满分网,如果存在正整数M,使得对一切正整数n,Tn≤M都成立,则M的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.