满分5 > 高中数学试题 >

已知椭圆M的对称轴为坐标轴,且抛物线的焦点是椭圆M的一个焦点,又点A在椭圆M上....

已知椭圆M的对称轴为坐标轴,且抛物线manfen5.com 满分网的焦点是椭圆M的一个焦点,又点Amanfen5.com 满分网在椭圆M上.
(Ⅰ)求椭圆M的方程;
(Ⅱ)已知直线l的方向向量为manfen5.com 满分网,若直线l与椭圆M交于B、C两点,求△ABC面积的最大值.
(Ⅰ)先求出抛物线的焦点坐标,进而设出椭圆方程,再把点A代入方程求出a,即可求椭圆M的方程; (Ⅱ)先利用直线l的方向向量为,求出直线的斜率,设出直线方程;再与椭圆方程联立,求出B、C两点的坐标与m的关系;再求出B、C两点之间的线段长以及点A到BC的距离,代入△ABC面积的表达式,再结合不等式的有关知识求出△ABC面积的最大值即可. 【解析】 (Ⅰ)由已知抛物线的焦点为,故设椭圆方程为. 将点代入方程得,整理得a4-5a2+4=0, 解得a2=4或a2=1(舍). 故所求椭圆方程为.(6分) (Ⅱ)设直线BC的方程为,设B(x1,y1),C(x2,y2), 代入椭圆方程并化简得, 由△=8m2-16(m2-4)=8(8-m2)>0,可得m2<8.(*) 由, 故. 又点A到BC的距离为, 故, 当且仅当2m2=16-2m2,即m=±2时取等号(满足*式) 所以△ABC面积的最大值为.(12分)
复制答案
考点分析:
相关试题推荐
已知定圆Q:x2+y2-2x-15=0,动圆M和已知圆内切,且过点P(-1,0),
(1)求圆心M的轨迹及其方程;
(2)试确定m的范围,使得所求方程的曲线C上有两个不同的点关于直线l:y=4x+m对称.
查看答案
本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
查看答案
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角.
(1)求证:平面B1AC⊥平面ABB1A1
(2)求二面角B-B1C-A的正切值.

manfen5.com 满分网 查看答案
等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=bx+r(b>0)且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记bn=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若manfen5.com 满分网
(Ⅰ)求A; 
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.