满分5 > 高中数学试题 >

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如...

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆manfen5.com 满分网
(1)若椭圆manfen5.com 满分网,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”manfen5.com 满分网manfen5.com 满分网分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

manfen5.com 满分网
(1)分别求出特征三角形是腰长为a 和底边长为2c,从而得到椭圆的相似比. (2)设出椭圆Cb的方程,直线lMN的方程,根据两点关于直线对称的性质,求出直线lMN的方程,根据直线lMN与椭圆Cb有两个不同的交点,判别式大于零,求得实数b的取值范围. (3)作法:过原点作直线y=kx(k≠1),交椭圆M和椭圆Mλ于点E和点F,则△CDF和△ABE即为所求相似三角形,且相似比为λ. 【解析】 (1)椭圆C2与C1相似. 因为椭圆C2的特征三角形是腰长为a=4,底边长为2c=的等腰三角形, 而椭圆C1的特征三角形是腰长为2,底边长为的等腰三角形,因此两个等腰三角形相似,且相似比为2. (2)椭圆Cb的方程为:, 设lMN:y=-x+t,点M(x1,y1),N(x2,y2),MN中点为(x,y), 则,所以5x2-8tx+4(t2-b2)=0,则. 因为中点在直线y=x+1上,所以有  ,,即直线lMN的方程为:, 由题意可知,直线lMN与椭圆Cb有两个不同的交点, 即方程有两个不同的实数解, 所以,即. (3)作法:过原点作直线y=kx(k≠1),交椭圆M和椭圆Mλ于点E和点F,则△CDF和△ABE即为所求相似三角形,且相似比为λ.
复制答案
考点分析:
相关试题推荐
如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

manfen5.com 满分网 manfen5.com 满分网 查看答案
如图,已知点P在圆柱OO1的底面圆O上,AB为圆O的直径,圆柱OO1的表面积为20π,OA=2,∠AOP=120°.
(1)求异面直线A1B与AP所成角的大小;(结果用反三角函数值表示)
(2)求点A到平面A1PB的距离.

manfen5.com 满分网 查看答案
关于x的不等式manfen5.com 满分网的解集为(-1,n).
(1)求实数m、n的值;
(2)若z1=m+ni,z2=cosα+isinα,且z1z2为纯虚数,求manfen5.com 满分网的值.
查看答案
设非空集合S={x|m≤x≤n}满足:当x∈S时,有x2∈S.给出如下三个命题:①若m=1,则S={1};②若m=-manfen5.com 满分网,则manfen5.com 满分网≤n≤1;③若n=manfen5.com 满分网,则-manfen5.com 满分网≤m≤0.其中正确命题的个数是( )
A.0
B.1
C.2
D.3
查看答案
函数y=cos(2x+manfen5.com 满分网)-2的图象F按向量a平移到F′,F′的函数解析式为y=f(x),当y=f(x)为奇函数时,向量a可以等于.
A.(manfen5.com 满分网,-2)
B.(manfen5.com 满分网,2)
C.(manfen5.com 满分网,-2)
D.(manfen5.com 满分网,2)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.