满分5 > 高中数学试题 >

抛物线的焦点坐标是( ) A. B. C.(0,1) D.(1,0)

抛物线manfen5.com 满分网的焦点坐标是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.(0,1)
D.(1,0)
先将方程化简为标准形式,即可得焦点坐标. 【解析】 由抛物线可得x2=4y,故焦点坐标为(0,1) 故选C.
复制答案
考点分析:
相关试题推荐
已知等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{bn}满足2n2-(t+bn)n+manfen5.com 满分网bn=0(t∈R,n∈N*).
(1)求数列{an}的通项公式;
(2)试确定t的值,使得数列{bn}为等差数列;
(3)当{bn}为等差数列时,对任意正整数k,在ak与ak+1之间插入2共bk个,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tn=2cm+1的所有正整数m的值.
查看答案
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆manfen5.com 满分网
(1)若椭圆manfen5.com 满分网,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”manfen5.com 满分网manfen5.com 满分网分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

manfen5.com 满分网 查看答案
如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

manfen5.com 满分网 manfen5.com 满分网 查看答案
如图,已知点P在圆柱OO1的底面圆O上,AB为圆O的直径,圆柱OO1的表面积为20π,OA=2,∠AOP=120°.
(1)求异面直线A1B与AP所成角的大小;(结果用反三角函数值表示)
(2)求点A到平面A1PB的距离.

manfen5.com 满分网 查看答案
关于x的不等式manfen5.com 满分网的解集为(-1,n).
(1)求实数m、n的值;
(2)若z1=m+ni,z2=cosα+isinα,且z1z2为纯虚数,求manfen5.com 满分网的值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.