满分5 > 高中数学试题 >

已知动点P(x,y)到点F(0,1)与到直线y=-1的距离相等, (1)求点P的...

已知动点P(x,y)到点F(0,1)与到直线y=-1的距离相等,
(1)求点P的轨迹L的方程;
(2) 若正方形ABCD的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲线L上,设BC的斜率为k,l=|BC|,求l关于k的函数解析式l=f(k);
(3)求(2)中正方形ABCD面积S的最小值.
(1)利用抛物线的定义得到点P的轨迹是抛物线;利用抛物线的方程写出轨迹方程. (2)利用直线方程的点斜式设出直线AB,BC,将两直线方程分别于抛物线联立;利用韦达定理及弦长公式表示出AB,BC;由正方形的边长相等,得到斜率与坐标的关系,代入BC中,得到函数解析式l=f(k). (3)求面积的最小值即求BC的最小值,利用基本不等式求出正方形边长的最小值. 【解析】 (1)由题设可得动点P的轨迹方程为x2=4y.(4分) (2)由(1),可设直线BC的方程为:(k>0),, 易知x2、x3为该方程的两个根,故有x2+x3=4k,得x3=4k-x2, 从而得(6分) 类似地,可设直线AB的方程为:, 从而得,(8分) 由|AB|=|BC|,得k2•(2k-x2)=(2+kx2), 解得,(k>0).(10分) (3)因为,(12分) 所以S=l2≥32,即S的最小值为32, 当且仅当k=1时取得最小值.(14分)
复制答案
考点分析:
相关试题推荐
已知点(x,y)在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x2+y2=8;定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.
(1)求曲线C的方程;
(2)求m的取值范围.
查看答案
已知圆C:x2+y2+Dx+Ey+3=0,圆C关于直线x+y-1=0对称,圆心在第二象限,半径为manfen5.com 满分网
(Ⅰ)求圆C的方程;
(Ⅱ)已知不过原点的直线l与圆C相切,且在x轴、y轴上的截距相等,求直线l的方程.
查看答案
椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,过F1的直线l与椭圆交于A、B两点.
(1)如果点A在圆x2+y2=c2(c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率;
(2)若函数manfen5.com 满分网,(m>0且m≠1)的图象,无论m为何值时恒过定点(b,a),求manfen5.com 满分网的取值范围.
查看答案
在平面直角坐标系中,已知点manfen5.com 满分网,点B在直线manfen5.com 满分网上运动,过点B与l垂直的直线和AB的中垂线相交于点M.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设点P是轨迹E上的动点,点R,N在y轴上,圆C:(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.
查看答案
已知双曲线的中心在原点,右顶点为A(1,0)点P、Q在双曲线的右支上,支M(m,0)到直线AP的距离为1
(Ⅰ)若直线AP的斜率为k,且manfen5.com 满分网,求实数m的取值范围;
(Ⅱ)当manfen5.com 满分网时,△APQ的内心恰好是点M,求此双曲线的方程.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.