满分5 > 高中数学试题 >

已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=,点P为椭圆上一动点,...

已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=manfen5.com 满分网,点P为椭圆上一动点,点F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为manfen5.com 满分网
(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A,点M为动点,且manfen5.com 满分网|manfen5.com 满分网|2manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网成等差数列,求动点M的轨迹C2的方程.
(1)设出椭圆的方程,利用离心率和a,b与c的关系求得a和b的关系,根据椭圆的几何性质知,当点P为椭圆的短轴端点时,△PF1F2的面积最大,进而求得bc的关系,最后联立求得a和b,则椭圆的方程可得. (2)根据(1)中的方程求得A和两焦点坐标,设出M的坐标,利用,,,根据已知条件求得x和y的关系,点M的轨迹方程可得. 【解析】 (1)设椭圆C1的方程为+=1(a>b>0),c=,则=,所以a=2b、 由椭圆的几何性质知,当点P为椭圆的短轴端点时, △PF1F2的面积最大,故|F1F2|b=bc=, 解得a=2,b=1. 故所求椭圆方程为+y2=1. (2)由(1)知A(0,1),F1(-,0),F2(,0), 设M(x,y),则=(-,1),=(x-,y),=(x,y-1),=(-,-1). 由已知条件得x(x-)+y(y-1)=-x-y,整理,得M的轨迹C2的方程为x2+y2=.
复制答案
考点分析:
相关试题推荐
已知圆 O:x2+y2=2交x轴正半轴于点A,点F满足manfen5.com 满分网,以F为右焦点的椭圆 C的离心率为manfen5.com 满分网
(Ⅰ)求椭圆 C的标准方程;
(Ⅱ)设过圆 0上一点P的切线交直线 x=2于点Q,求证:PF⊥OQ.
查看答案
如图,直角三角形ABC的顶点坐标A(-2,0),直角顶点manfen5.com 满分网,顶点C在x轴上,点P为线段OA的中点.
(1)求BC边所在直线方程;
(2)M为直角三角形ABC外接圆的圆心,求圆M的方程;
(3)若动圆N过点P且与圆M内切,求动圆N的圆心N的轨迹方程.

manfen5.com 满分网 查看答案
已知双曲线中心在原点,焦点在x轴上,实轴长为2.一条斜率为1的直线经过双曲线的右焦点与双曲线相交于A、B两点,以AB为直径的圆与双曲线的右准线相交于M、N.
(1)若双曲线的离心率2,求圆的半径;
(2)设AB中点为H,若manfen5.com 满分网,求双曲线方程.
查看答案
已知动点P(x,y)到点F(0,1)与到直线y=-1的距离相等,
(1)求点P的轨迹L的方程;
(2) 若正方形ABCD的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲线L上,设BC的斜率为k,l=|BC|,求l关于k的函数解析式l=f(k);
(3)求(2)中正方形ABCD面积S的最小值.
查看答案
已知点(x,y)在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x2+y2=8;定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.
(1)求曲线C的方程;
(2)求m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.