满分5 > 高中数学试题 >

已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C...

manfen5.com 满分网已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F在直线l2交轨迹于两点P、Q,交直线l1于点R,求manfen5.com 满分网的最小值.
(1)根据点C到点F的距离等于它到l1的距离,依据抛物线的定义可知点C的轨迹是以F为焦点,l1为准线的抛物线,进而求得其轨迹方程. (2)设出直线l2的方程与抛物线方程联立消去y,设出P,Q的坐标,根据韦达定理表示出x1+x2和x1x2的表达式,进而可得点R的坐标,表示出,根据均值不等式求得其最小值. 【解析】 (1)由题设点C到点F的距离等于它到l1的距离, ∴点C的轨迹是以F为焦点,l1为准线的抛物线 ∴所求轨迹的方程为x2=4y (2)由题意直线l2的方程为y=kx+1, 与抛物线方程联立消去y得x2-4kx-4=0. 记P(x1,y1),Q(x2,y2),则x1+x2=4k,x1x2=-4. 因为直线PQ的斜率k≠0,易得点R的坐标为 = = = =, ∵,当且仅当k2=1时取到等号. 的最小值为16
复制答案
考点分析:
相关试题推荐
设椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过点N且倾斜角为30°的直线l交椭圆于A、B两点.
(1)求直线l和椭圆的方程;
(2)求证:点F1(-2,0)在以线段AB为直径的圆上;
(3)在直线l上有两个不重合的动点C、D,以CD为直径且过点F1的所有圆中,求面积最小的圆的半径长.
查看答案
已知动点P的轨迹为曲线C,且动点P到两个定点F1(-1,0),F2(1,0)的距离manfen5.com 满分网的等差中项为manfen5.com 满分网
(1)求曲线C的方程;
(2)直线l过圆x2+y2+4y=0的圆心Q与曲线C交于M,N两点,且manfen5.com 满分网为坐标原点),求直线l的方程;
(3)设点manfen5.com 满分网,点P为曲线C上任意一点,求manfen5.com 满分网的最小值,并求取得最小值时点P的坐标.
查看答案
如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足manfen5.com 满分网=0,求动点M的轨迹Q;
(2) F1,F2是轨迹Q的左、右焦点,过F1作直线l(不与x轴重合),l与轨迹Q相交于C,D,并与圆x2+y2=3相交于E,F.当manfen5.com 满分网,且λ∈[manfen5.com 满分网,1]时,求△F2CD的面积S的取值范围.

manfen5.com 满分网 查看答案
已知抛物线C1的方程为y=ax2(a>0),圆C2的方程为x2+(y+1)2=5,直线l1:y=2x+m(m<0)是C1、C2的公切线.F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点的C1的切线l交y轴于点B,设manfen5.com 满分网,证明:点M在一定直线上.

manfen5.com 满分网 查看答案
已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=manfen5.com 满分网,点P为椭圆上一动点,点F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为manfen5.com 满分网
(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A,点M为动点,且manfen5.com 满分网|manfen5.com 满分网|2manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网成等差数列,求动点M的轨迹C2的方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.