(1)根据点C到点F的距离等于它到l1的距离,依据抛物线的定义可知点C的轨迹是以F为焦点,l1为准线的抛物线,进而求得其轨迹方程.
(2)设出直线l2的方程与抛物线方程联立消去y,设出P,Q的坐标,根据韦达定理表示出x1+x2和x1x2的表达式,进而可得点R的坐标,表示出,根据均值不等式求得其最小值.
【解析】
(1)由题设点C到点F的距离等于它到l1的距离,
∴点C的轨迹是以F为焦点,l1为准线的抛物线
∴所求轨迹的方程为x2=4y
(2)由题意直线l2的方程为y=kx+1,
与抛物线方程联立消去y得x2-4kx-4=0.
记P(x1,y1),Q(x2,y2),则x1+x2=4k,x1x2=-4.
因为直线PQ的斜率k≠0,易得点R的坐标为
=
=
=
=,
∵,当且仅当k2=1时取到等号.
的最小值为16