满分5 > 高中数学试题 >

用反证法证明命题:“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5...

用反证法证明命题:“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为   
反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的. 【解析】 由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证. 命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”. 故答案为:a,b都不能被5整除.
复制答案
考点分析:
相关试题推荐
设ξ是一个离散型随机变量,其分布列如下表,则q=   
manfen5.com 满分网 查看答案
将全体正奇数排成一个三角形数阵:
1
3   5
7   9   11
13  15  17  19

按照以上排列的规律,第n 行(n≥3)从左向右的第3个数为    查看答案
已知函数f(x)=xlnx-2x+a,其中a∈R.
(1)求f(x)的单调区间;
(2)若方程f(x)=0没有实根,求a的取值范围;
(3)证明:ln1+2ln2+3ln3+…+nlnn>(n-1)2,其中n≥2.
查看答案
已知点F是椭圆manfen5.com 满分网右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足manfen5.com 满分网,若点P满足manfen5.com 满分网
(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断manfen5.com 满分网是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案
manfen5.com 满分网,其中a∈R.
(1)若f(x)有极值,求a的取值范围;
(2)若当x≥0,f(x)>0恒成立,求a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.