某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如右图:
(ⅰ)统计方法中,同一组数据常用该组区间的中点值(例如区间[160,170)的中点值为165)作为代表.据此,计算这100名学生身高数据的期望μ及标准差φ(精确到0.1);
(ⅱ)若总体服从正态分布,以样本估计总体,据此,估计该年级身高在(158.6,181.4)范围中的学生的人数.
(Ⅲ)如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
| 身高达标 | 身高不达标 | 总计 |
积极参加体育锻炼 | 40 | | |
不积极参加体育锻炼 | | 15 | |
总计 | | | 100 |
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K
2=
,参考数据:
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
考点分析:
相关试题推荐
设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
,-1).
(1)求φ;
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.
查看答案
曲线C的参数方程是:
(θ为参数),设O为坐标原点,点M(x
,y
)在C上运动,点P(x,y)是线段OM的中点,则点P轨迹的普通方程为
查看答案
如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=2
,若∠CAP=30°,则⊙O的直径AB=
.
查看答案
给定下列四个命题:
①∃x
∈R,sinx
+cosx
;
②∃x
∈[0,
],
=cosx
;
③已知随机变量X~N(μ,ρ
2),ρ越小,则X集中在μ周围的概率越大;
④用相关指数R
2来刻画回归的效果就越好,R
2取值越大,则残差平方和越小,模型拟合的效果就越好.其中为真命题的是
.
查看答案
甲乙两艘船都要在某个泊停靠,若分别停靠6小时、8小时.假定它们在一昼夜的时间段内到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为
.
查看答案