登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
在正方体ABCD-A1B1C1D1中,BC1与平面BDD1B1所成的角为( ) ...
在正方体ABCD-A
1
B
1
C
1
D
1
中,BC
1
与平面BDD
1
B
1
所成的角为( )
A.30°
B.45°
C.60°
D.90°
连接A1C1,交B1D1于O,连接BO,得到∠OBC1是BC1与平面BDD1B1所成的角,然后再在三角形OBC1中求出此角即可. 【解析】 连接A1C1,交B1D1于O,连接BO, 得到∠OBC1是BC1与平面BDD1B1所成的角, 设正方体的棱长为2, 在直角三角形OBC1中,由题意,得 OC1=,BC1=2, ∴sin∠OBC1=,∴∠OBC1中=30° 故直线DE与平面ABCD所成角的大小是:30°. 故选A.
复制答案
考点分析:
相关试题推荐
以下三个命题:①分别在两个平面内的直线一定是异面直线;②过平面α的一条斜线有且只有一个平面与α垂直;③垂直于同一个平面的两个平面平行.其中真命题的个数是( )
A.0
B.1
C.2
D.3
查看答案
方程
所表示的曲线是( )
A.焦点在x轴上的椭圆
B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线
D.焦点在y轴上的双曲线
查看答案
命题“对任意的x∈R,x
3
-x
2
+1≤0”的否定是( )
A.不存在x∈R,x
3
-x
2
+1≤0
B.存在x∈R,x
3
-x
2
+1≤0
C.存在x∈R,x
3
-x
2
+1>0
D.对任意的x∈R,x
3
-x
2
+1>0
查看答案
设椭圆
=1(a>0,b>0)的离心率e=
,右焦点F(c,0),方程ax
2
+bx-c=0的两个根分别为x
1
,x
2
,则点P(x
1
,x
2
)在( )
A.圆x
2
+y
2
=2内
B.圆x
2
+y
2
=2上
C.圆x
2
+y
2
=2外
D.以上三种情况都有可能
查看答案
点P(-3,1)在椭圆
=1(a>b>0)的左准线上.过点P且方向为
=(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( )
A.
B.
C.
D.
查看答案
试题属性
题型:选择题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.