(1)欲证MN∥平面PAD,根据直线与平面平行的判定定理可知只需证MN与平面PAD内一直线平行即可,设PD的中点为E,连接AE、NE,易证AMNE是平行四边形,则MN∥AE,而AE⊂平面PAD,NM⊄平面PAD,满足定理所需条件;
(2)欲证平面PMC⊥平面PCD,根据面面垂直的判定定理可知在平面PMC内一直线与平面PCD垂直,而AE⊥PD,CD⊥AE,PD∩CD=D,根据线面垂直的判定定理可知AE⊥平面PCD,而MN∥AE,则MN⊥平面PCD,又MN⊂平面PMC,满足定理所需条件.
证明:(1)设PD的中点为E,连接AE、NE,
由N为PC的中点知ENDC,
又ABCD是矩形,∴DCAB,∴ENAB
又M是AB的中点,∴ENAM,
∴AMNE是平行四边形
∴MN∥AE,而AE⊂平面PAD,NM⊄平面PAD
∴MN∥平面PAD
证明:(2)∵PA=AD,∴AE⊥PD,
又∵PA⊥平面ABCD,CD⊂平面ABCD,
∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD
∴CD⊥AE,∵PD∩CD=D,∴AE⊥平面PCD,
∵MN∥AE,∴MN⊥平面PCD,
又MN⊂平面PMC,
∴平面PMC⊥平面PCD.