满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R, (1)若不等式f(...

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,manfen5.com 满分网
(1)若不等式f(x)>4的解集为{x|x<-3或x>1},求F(x)的表达式;
(2)在(1)的条件下,当x∈[-1,1]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m•n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?
(1)先由已知不等式ax2+bx-3>0的解集为{x|x<-3或x>1},故a>0,且方程ax2+bx-3=0的两根结合韦达定理,得a,b的值即可写出F(x)的表达式; (2)由于g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=,利用二次函数的图象与性质得出实数k的取值范围即可; (3)根据f(x)是偶函数得到:,再结合题中条件:m•n<0,设m>n,则n<0.又m+n>0,m>-n>0,计算出|m|>0,从而F(m)+F(n)能大于零. 【解析】 (1)由已知不等式ax2+bx-3>0的解集为{x|x<-3或x>1},故a>0,且方程ax2+bx-3=0的两根为-3,1,由韦达定理,得解得a=1,b=2.因此, (2)∵g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=, 当或时,即k≥4或k≤0时,g(x)是单调函数. (3)∵f(x)是偶函数∴f(x)=ax2+1,, ∵m•n<0,设m>n,则n<0.又m+n>0,m>-n>0, ∴|m|>|-n|F(m)+F(n)=f(m)-f(n)=(am2+1)-an2-1=a(m2-n2)>0, ∴F(m)+F(n)能大于零.
复制答案
考点分析:
相关试题推荐
已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|x2-2mx+m2-9≤0,x∈R,m∈R}
(1)若A∩B=[2,3],求实数m的值;
(2)若p是¬q的充分条件,求实数m的取值范围.
查看答案
已知函数manfen5.com 满分网.讨论函数f(x)的奇偶性,并说明理由.
查看答案
定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:
①f(x)是周期函数;
②f(x)的图象关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(2)=f(0).
其中正确的判断是    (把你认为正确的判断都填上). 查看答案
已知函数f(x)=ax3+bx2+cx+d(a≠0)的导函数是g(x),a+b+c=0,g(0)•g(1)<0.设x1,x2是方程g(x)=0的两根,则|x1-x2|的取值范围为    查看答案
manfen5.com 满分网有最大值,则不等式loga(x-1)>0的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.