满分5 > 高中数学试题 >

设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t...

设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是( )
A.-2≤t≤2
B.manfen5.com 满分网
C.t≥2或t≤-2或t=0
D.manfen5.com 满分网
奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,在[-1,1]最大值是1,由此可以得到1≤t2-2at+1,因其在a∈[-1,1]时恒成立,可以改变变量,以a为变量,利用一次函数的单调性转化求解. 【解析】 奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,在[-1,1]最大值是1, ∴1≤t2-2at+1, 当t=0时显然成立 当t≠0时,则t2-2at≥0成立,又a∈[-1,1] 令r(a)=-2ta+t2,a∈[-1,1] 当t>0时,r(a)是减函数,故令r(1)≥0,解得t≥2 当t<0时,r(a)是增函数,故令r(-1)≥0,解得t≤-2 综上知,t≥2或t≤-2或t=0 故选C.
复制答案
考点分析:
相关试题推荐
已知a>0,b>0,则manfen5.com 满分网的最小值是( )
A.2
B.manfen5.com 满分网
C.4
D.5
查看答案
设数列{an}是等差数列,且a3=-6,a7=6;sn是数列的前n项和,则( )
A.s4>s6
B.s4=s5
C.s6<s5
D..s6=s5
查看答案
直线manfen5.com 满分网绕原点逆时针方向旋转30°后所得直线与圆(x-2)2+y2=3的位置关系是( )
A.直线过圆心
B.直线与圆相交,但不过圆心
C.直线与圆相切
D.直线与圆无公共点
查看答案
已知函数f(x)=sin(ωx+manfen5.com 满分网)(ω>0)的最小正周期为π,则该函数的图象( )
A.关于点(manfen5.com 满分网,0)对称
B.关于直线x=manfen5.com 满分网对称
C.关于点(manfen5.com 满分网,0)对称
D.关于直线x=manfen5.com 满分网对称
查看答案
下列函数,在其定义域内既是奇函数又是增函数的是( )
A.y=x+x3(x∈R)
B.y=3x(x∈R)
C.y=-log2x(x>0,x∈R)
D.y=-manfen5.com 满分网(x∈R,x≠0)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.