(1)根据诱导公式化简已知条件,得到cosA的值,根据cosA的值大于0且A为三角形的内角,得到A为锐角,所以利用同角三角函数间的基本关系求出sinA的值,进而求出tanA的值,然后把所求的式子利用二倍角的正切函数公式化为关于tanA的式子,把tanA的值代入即可求出值;
(2)由cosB的值和B的范围,利用同角三角函数间的基本关系求出sinB的值,根据三角形的内角和定理及诱导公式得到sinC与sin(A+B)相等,利用两角和的正弦函数公式化简sin(A+B),把各自的值代入求出sin(A+B)的值,即为sinC的值,再由c,sinA及sinC的值,利用正弦定理求出a的值,然后由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.
【解析】
(1)由已知得:sin(+A)=cosA=,
因为角A是△ABC内角,且cosA>0,则角A是锐角.
所以.(4分)
故.(6分)
(2)因为,B为三角形的内角,所以.(7分)
于是.(9分)
因为c=10,由正弦定理,得.(11分)
故.(12分)