(1)要证明C1B⊥平面ABC,根据本题条件,需要证明BC1AB⊥,由AB⊥侧面BB1C1C就可以解决;而要证明C1B⊥BC;则需要通过解三角形来证明;
(2)要确定E点的位置,使得EA⊥EB1,由三垂线定理,必有BE⊥B1E,通过解直角三角形BEB1解决;
(3)需要作出二面角的平面角,通过解三角形解决.
证明:(1)因为AB⊥侧面BB1C1C,故AB⊥BC1,
在△BC1C中,由余弦定理有:
=,
故有BC2+BC12=CC12∴C1B⊥BC,
而BC∩AB=B且AB,BC⊂平面ABC,
∴C1B⊥平面ABC;
(2)EA⊥EB1,AB⊥EB1,AB∩AE=A,AB,AE⊂平面ABE,
从而B1E⊥平面ABE,且BE⊂平面ABE,故BE⊥B1E,
不妨设CE=x,则C1E=2-x,则BE2=1+x2-x,
又∵则B1E2=1+x2+x,
在Rt△BEB1中有x2+x+1+x2-x+1=4,从而x=±1(舍负),
故E为CC1的中点时,EA⊥EB1,
(3)取EB1的中点D,A1E的中点F,BB1的中点N,AB1的中点M
连DF,则DF∥A1B1,连DN则DN∥BE,连MN则MN∥A1B1,
连MF则MF∥BE,且MN∥DF,MD∥AE
又∵A1B1⊥EB1,AE⊥EB1,故DF⊥EB1,MD⊥EB1,∠MDF为所求二面角的平面角,
在Rt△DFM 为正三角形)
=.