满分5 > 高中数学试题 >

先阅读下列不等式的证法,再解决后面的问题: 已知a1,a2∈R,a1+a2=1,...

先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证a12+a22manfen5.com 满分网
证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而得a12+a22manfen5.com 满分网
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
(1)由已知中已知a1,a2∈R,a1+a2=1,求证a12+a22,及 整个式子的证明过程,我们根据归纳推理可以得到一个一般性的公式,若a1,a2,…,an∈R,a1+a2+…+an=1,则a12+a22+…+an2≥.(2)但此公式是由归纳推理得到的,其正确性还没有得到验证,观察已知中的证明过程,我们可以类比对此公式进行证明. 【解析】 (1)若a1,a2,…,an∈R,a1+a2+…+an=1, 求证:a12+a22+…+an2≥ (2)证明:构造函数 f(x)=(x-a1)2+(x-a2)2+…+(x-an)2 =nx2-2(a1+a2+…+an)x+a12+a22+…+an2 =nx2-2x+a12+a22+…+an2 因为对一切x∈R,都有f(x)≥0,所以△=4-4n(a12+a22+…+an2)≤0 从而证得:a12+a22+…+an2≥
复制答案
考点分析:
相关试题推荐
制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
查看答案
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
查看答案
已知函数f(x)=|2x+1|+|2x-3|,
(1)求不等式f(x)≤6的解集.
(2)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.
查看答案
设集合A={x|x2-2ax+a2-1<0},B={x|x2-6x+5<0},若A∩B=∅,求实数a的取值范围.
查看答案
已知x>0,由不等式x+manfen5.com 满分网≥2manfen5.com 满分网=2,x+manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网≥33manfen5.com 满分网=3…,启发我们可以得出推广结论:x+manfen5.com 满分网≥n+1(n∈N+)则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.