满分5 > 高中数学试题 >

在平面直角坐标系xOy中,直线l与抛物线y2=2x相交于A、B两点. (1)求证...

在平面直角坐标系xOy中,直线l与抛物线y2=2x相交于A、B两点.
(1)求证:“如果直线l过点T(3,0),那么manfen5.com 满分网=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
(1)设出A,B两点的坐标根据向量的点乘运算求证即可, (2)把(1)中题设和结论变换位置然后设出A,B两点的坐标根据向量运算求证即可. 【解析】 (1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2). 当直线l的钭率不存在时,直线l的方程为x=3, 此时,直线l与抛物线相交于点A(3,)、B(3,-). ∴=3; 当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0, 由得ky2-2y-6k=0⇒y1y2=-6 又∵, ∴, 综上所述,命题“如果直线l过点T(3,0),那么=3”是真命题; (2)逆命题是:设直线l交抛物线y2=2x于A、B两点, 如果=3,那么该直线过点T(3,0).该命题是假命题. 例如:取抛物线上的点A(2,2),B(,1), 此时=3, 直线AB的方程为:,而T(3,0)不在直线AB上; 说明:由抛物线y2=2x上的点A(x1,y1)、B(x2,y2)满足=3,可得y1y2=-6, 或y1y2=2,如果y1y2=-6,可证得直线AB过点(3,0);如果y1y2=2,可证得直线 AB过点(-1,0),而不过点(3,0).
复制答案
考点分析:
相关试题推荐
先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证a12+a22manfen5.com 满分网
证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而得a12+a22manfen5.com 满分网
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
查看答案
制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
查看答案
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
查看答案
已知函数f(x)=|2x+1|+|2x-3|,
(1)求不等式f(x)≤6的解集.
(2)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.
查看答案
设集合A={x|x2-2ax+a2-1<0},B={x|x2-6x+5<0},若A∩B=∅,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.