(1)连接两个圆的公共弦GD,然后根据圆内接四边形的性质,易得AEG=∠BDG,∠AFG=∠CDG,即∠AEG+∠AFG=180°,再由圆内接四边形的判定定理,易得A,E,G,F四点共圆,进而再由圆周角定理的推论得到:∠EAG=∠EFG;
(2)由已知中⊙O2的半径为5,圆心O2到直线AC的距离为3,由垂径定理,我们可以求出FC的长,结合AC=10,AG切⊙O2于G,由切割线定理,我们易求出AG的长.
【解析】
(1)连接GD,因为四边形BDGE,CDGF分别内接于⊙O1,⊙O2,
∴∠AEG=∠BDG,∠AFG=∠CDG,
又∠BDG+∠CDG=180°,∴∠AEG+∠AFG=180°.
即A,E,G,F四点共圆,∴∠EAG=∠EFG.
(2)因为⊙O2的半径为5,圆心O2到直线AC的距离为3,
所以由垂径定理知FC=2=8,又AC=10,
∴AF=2,∵AG切⊙O2于G,∴AG2=AF•AC=2×10=20,AG=2.