由图形知|BC|=a,且BC∥OA由椭圆的对称性知,B,C两点关于y轴对称,由此可以求出两点的坐标,再连接OC,有∠OAB=45°及平行的性质,椭圆的对称性,令椭圆的右端点为M,则有∠COM=∠CMO=∠OAB=45°由此可得CO垂直于MC,由此垂直关系建立方程即可求得离心率的值.
【解析】
令椭圆的右端点为M,连接CM,由题意四边形OABC为平行四边形,且∠OAB=45°,B,C在椭圆上,可得∠COM=∠CMO=∠OAB=45°,则有∠OCM=90°,故可得kOC×kCM=-1
又四边形OABC为平行四边形,B,C在椭圆上,由图形知|BC|=a,且BC∥OA由椭圆的对称性知,B,C两点关于y轴对称,故C的横坐标为,代入椭圆的方程得
,解得y=±b,
由图形知C(,b),故有,所以有解得a2=3b2,故可得c2=2b2,所以e2=,得e=
故选C