为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个50m
2的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
表1:施用新化肥小麦产量频数分布表
小麦产量 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) |
频数 | 10 | 35 | 40 | 10 | 5 |
表2:不施用新化肥小麦产量频数分布表
小麦产量 | [0,10) | [10,20) | [20,30) | [30,40) |
频数 | 15 | 50 | 30 | 5 |
(1)完成下面频率分布直方图;
施用新化肥后小麦产量的频率分布直方图 不施用新化肥后小麦产量的频率分布直方图
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
| 小麦产量小于20kg | 小麦产量不小于20kg | 合计 |
施用新化肥 | a= | b= | |
不施用新化肥 | c= | d= | |
合计 | | | n= |
附:
P(K2≥k) | 0.050 0.010 0.005 0.001 |
k | 3.841 6.635 7.879 10.828 |
考点分析:
相关试题推荐
已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦点,双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这两条曲线的方程;
(2)直线l过x轴上定点N(异于原点),与抛物线交于A、B两点且以AB为直径的圆过原点,试求出定点N的坐标.
查看答案
在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为
,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.
查看答案
某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.
(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);
(Ⅱ)求η的分布列及期望Eη.
查看答案
已知
(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.
查看答案
有下列四个命题:
①“若xy≠-1,则x≠1或y≠-1”是假命题;
②“∀x∈R,x
2+1>1”的否定是“∃x∈R,x
2+1≤1”
③当a
1,a
2,b
1,b
2,c
1,c
2均不等于0时,“不等式a
1x
2+b
1x+c
1>0与a
2x
2+b
2x+c
2>0解集相同”是“
”的充要条件;
④“全等三角形相似”的否命题是“全等三角形不相似”,其中正确命题的序号是
.
(写出你认为正确的所有命题序号)
查看答案