设函数f(θ)=
,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(I)若点P的坐标为
,求f(θ)的值;
(II)若点P(x,y)为平面区域Ω:
,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
考点分析:
相关试题推荐
已知等比数列{a
n}的公比q=3,前3项和S
3=
.
(I)求数列{a
n}的通项公式;
(II)若函数f(x)=Asin(2x+φ)(A>0,0<φ<p<π)在
处取得最大值,且最大值为a
3,求函数f(x)的解析式.
查看答案
已知函数
.
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间
上的最大值和最小值.
查看答案
在△ABC中,a,b,c,分别为内角A,B,C所对的边长,a=
,b=
,1+2cos(B+C)=0,求边BC上的高.
查看答案
已知二次函数f(x)=ax
2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对∀x
1,x
2∈R,且x
1<x
2,f(x
1)≠f(x
2),试证明∃x
∈(x
1,x
2),使
成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对∀x∈R,f(x-4)=f(2-x),且f(x)≥0;②对∀x∈R,都有
.若存在,求出a,b,c的值,若不存在,请说明理由.
查看答案
设函数
.
(I)求f′(x)的表达式;
(Ⅱ)求函数f(x)的单调区间、极大值和极小值;
(Ⅲ)若x∈[a+1,a+2]时,恒有f′(x)>-3a,求实数a的取值范围.
查看答案