满分5 > 高中数学试题 >

已知函数f(x)=2sin(x-),x∈R (1)求f()的值; (2)设α,β...

已知函数f(x)=2sin(manfen5.com 满分网x-manfen5.com 满分网),x∈R
(1)求f(manfen5.com 满分网)的值;
(2)设α,β∈[0,manfen5.com 满分网],f(3α+manfen5.com 满分网)=manfen5.com 满分网,f(3β+2π)=manfen5.com 满分网,求cos(α+β)的值.
(1)把x=代入函数f(x)的解析式中,化简后利用特殊角的三角函数值即可求出对应的函数值; (2)分别把x=3α+和x=3β+2π代入f(x)的解析式中,化简后利用诱导公式即可求出sinα和cosβ的值,然后根据α和β的范围,利用同角三角函数间的基本关系求出cosα和sinβ的值,然后把所求的式子利用两角和的余弦函数公式化简后,将各自的值代入即可求出值. 【解析】 (1)把x=代入函数解析式得: f()=2sin(×-)=2sin=; (2)由f(3α+)=,f(3β+2π)=,代入得: 2sin[(3α+)-]=2sinα=,2sin[(3β+2π)-]=2sin(β+)=2cosβ= sinα=,cosβ=,又α,β∈[0,], 所以cosα=,sinβ=, 则cos(α+β)=cosαcosβ-sinαsinβ=×-×=.
复制答案
考点分析:
相关试题推荐
设函数f(θ)=manfen5.com 满分网,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(I)若点P的坐标为manfen5.com 满分网,求f(θ)的值;
(II)若点P(x,y)为平面区域Ω:manfen5.com 满分网,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
查看答案
已知等比数列{an}的公比q=3,前3项和S3=manfen5.com 满分网
(I)求数列{an}的通项公式;
(II)若函数f(x)=Asin(2x+φ)(A>0,0<φ<p<π)在manfen5.com 满分网处取得最大值,且最大值为a3,求函数f(x)的解析式.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
在△ABC中,a,b,c,分别为内角A,B,C所对的边长,a=manfen5.com 满分网,b=manfen5.com 满分网,1+2cos(B+C)=0,求边BC上的高.
查看答案
已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对∀x1,x2∈R,且x1<x2,f(x1)≠f(x2),试证明∃x∈(x1,x2),使manfen5.com 满分网成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对∀x∈R,f(x-4)=f(2-x),且f(x)≥0;②对∀x∈R,都有manfen5.com 满分网.若存在,求出a,b,c的值,若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.