满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥C...

manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的大小;
(Ⅲ)在线段BC上是否存在点F,使得点E到平面PAF的距离为manfen5.com 满分网?若存在,确定点F的位置;若不存在,请说明理由.
(Ⅰ)先依据线面垂直的性质证明BC⊥PA,同理证明CD⊥PA,再依据线面垂直的判定定理得出 PA⊥平面ABCD. (Ⅱ)利用三垂线定理找出二面角的平面角,并加以证明,把此角放到直角三角形中,利用直角三角形中的边角关系解出此角. (Ⅲ)要使得点E到平面PAF的距离为,即要点D到平面PAF的距离为,过D作AF的垂线DG,由面面垂直的性质知,DG为点D到平面PAF的距离,可求DG的长度,由直角三角形相似可求BF=1. 【解析】 (Ⅰ)证明:∵底面ABCD为正方形, ∴BC⊥AB,又BC⊥PB, ∴BC⊥平面PAB, ∴BC⊥PA.(2分) 同理CD⊥PA,(4分) ∴PA⊥平面ABCD. (Ⅱ)【解析】 设M为AD中点,连接EM, 又E为PD中点, 可得EM∥PA,从而EM⊥底面ABCD. 过M作AC的垂线MN,垂足为N,连接EN. 由三垂线定理有EN⊥AC, ∴∠ENM为二面角E-AC-D的平面角.(7分) 在Rt△EMN中,可求得, ∴.(9分) ∴二面角E-AC-D的大小为.(10分) (Ⅲ)【解析】 由E为PD中点可知, 要使得点E到平面PAF的距离为,即要点D到平面PAF的距离为. 过D作AF的垂线DG,垂足为G, ∵PA⊥平面ABCD,∴平面PAF⊥平面ABCD, ∴DG⊥平面PAF,即 DG为点D到平面PAF的距离. ∴,∴.(12分) 设BF=x,由△ABF与△DGA相似可得  , ∴,即 x=1. ∴在线段BC上存在点F,且F为BC中点,使得点E到平面PAF的距离为.
复制答案
考点分析:
相关试题推荐
如图,直角三角形ABC的顶点坐标A(-2,0),直角顶点manfen5.com 满分网,顶点C在x轴上,点P为线段OA的中点.
(1)求BC边所在直线方程;
(2)M为直角三角形ABC外接圆的圆心,求圆M的方程;
(3)若动圆N过点P且与圆M内切,求动圆N的圆心N的轨迹方程.

manfen5.com 满分网 查看答案
(1)、已知函数manfen5.com 满分网.若角manfen5.com 满分网
(2)函数manfen5.com 满分网的图象按向量manfen5.com 满分网平移后,得到一个函数g(x)的图象,求g(x)的解析式.
查看答案
一种计算装置,有一个数据入口A和一个运算出口B,执行某种运算程序.(1)当从A口输入自然数1时,从B口得到实数manfen5.com 满分网,记为f(1)=manfen5.com 满分网;(2)当从A口输入自然数n(n≥2)时,在B口得到的结果f(n)是前一结果manfen5.com 满分网倍.当从A口输入3时,从B口得到     ;要想从B口得到manfen5.com 满分网,则应从A口输入自然数     查看答案
某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式manfen5.com 满分网来计算各班的综合得分,S的值越高则评价效果越好.若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为    .(填入a,b,c,d,e中的某个字母) 查看答案
在△ABC中,a,b,c分别为三个内角A、B、C所对的边,设向量manfen5.com 满分网=(b-c,c-a),manfen5.com 满分网=(b,c+a),若向量manfen5.com 满分网,则角A的大小为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.