满分5 > 高中数学试题 >

已知函数. (1)求证:不论a为何实数f(x)总是为增函数; (2)确定a的值,...

已知函数manfen5.com 满分网
(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数.
(1)先设x1<x2,欲证明不论a为何实数f(x)总是为增函数,只须证明:f(x1)-f(x2)<0,即可; (2)根据f(x)为奇函数,利用定义得出f(-x)=-f(x),从而求得a值即可. 【解析】 (1)∵f(x)的定义域为R, 设x1<x2, 则=(4分) ∵x1<x2,∴, ∴f(x1)-f(x2)<0,(6分) 即f(x1)<f(x2),所以不论a为何实数f(x)总为增函数.(7分) (2)∵f(x)为奇函数,∴f(-x)=-f(x), 即, 解得:.∴.(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+2xsinθ-1,manfen5.com 满分网
(1)当manfen5.com 满分网时,求f(x)的最大值和最小值;
(2)若f(x)在manfen5.com 满分网上是单调增函数,且θ∈[0,2π),求θ的取值范围.
查看答案
已知最小正周期为2的函数y=f(x),当x∈[-1,1]时,f(x)=x2,则函数y=f(x)(x∈R)的图象与y=|log5x|的图象的交点个数为    查看答案
为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:
分组151.5~158.5158.5~165.5165.5~172.5172.5~179.5
频数62lm
频率a0.1
则表中的m=    ,a=    查看答案
若|manfen5.com 满分网|=3,|manfen5.com 满分网|=2,且manfen5.com 满分网manfen5.com 满分网的夹角为60°,则|manfen5.com 满分网-manfen5.com 满分网|=    查看答案
完成下列进位制之间的转化:101101(2)=    (7)查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.