根据原函数与反函数图象之间的关系可得结论,对于原函数与复合函数的所过定点问题,本题可利用在函数值1保持不变的情况下,求出与原函数自变量x=0与之对应的复合函数的自变量x=-4,由函数与反函数定义域和值域的关系得出反函数图象经过点(1,-4).
【解析】
由函数y=f(x)的图象经过点(0,1),得f(0)=1,则f-1(1)=0
∴函数f-1(x)的图象一定经过点(1,0)
所以当x=-4时有f(4+x)=f(0)=1,
从而函数y=f(4+x)过点(-4,1),则函数y=f(4+x)的反函数并经过点(1,-4),
故答案为:(1,0),(1,-4).