满分5 > 高中数学试题 >

已知函数为R上的奇函数 (1)求a的值 (2)求函数的值域 (3)判断函数的单调...

已知函数manfen5.com 满分网为R上的奇函数
(1)求a的值
(2)求函数的值域
(3)判断函数的单调区间并证明.
(1)根据f(x)为奇函数,利用定义得出f(-x)=-f(x),从而求得a值即可; (2)由(1)知 ,利用指数函数2x的性质结合不等式的性质即可求得f(x)的值域. (3)先设x1<x2,欲证明不论a为何实数f(x)总是为增函数,只须证明:f(x1)-f(x2)<0,即可; 【解析】 (1)∵f(x)为奇函数,∴f(-x)=-f(x), 即 , 解得:a=1. ∴. (2)由(1)知 (4), ∵2x+1>1, ∴, ∴,∴-1<f(x)<1 所以函数的值域为 (-1,1). (3)∵f(x)的定义域为R,设x1<x2, 则 =, ∵x1<x2,∴,∴f(x1)-f(x2)<0, 即f(x1)<f(x2),所以不论a为何实数f(x)总为增函数.
复制答案
考点分析:
相关试题推荐
已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.
查看答案
定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:
①f(x)是周期函数;
②f(x)的图象关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(2)=f(0).
其中正确的判断是    (把你认为正确的判断都填上). 查看答案
已知函数f(x)满足:manfen5.com 满分网,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2010)=    查看答案
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为______
查看答案
已知关于x的方程4x-2x+1+3m-1=0有实根,则m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.