满分5 > 高中数学试题 >

函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a),a∈R, ...

函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a),a∈R,
(1)求g(a);
(2)若g(a)=manfen5.com 满分网,求a及此时f(x)的最大值.
(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况:①小于-1时②大于-1而小于1时③大于1时,根据二次函数求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一问的g(a)的第二和第三个解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值. 【解析】 (1)f(x)=1-2a-2acosx-2(1-cos2x) =2cos2x-2acosx-1-2a =2(cosx-)2--2a-1. 若<-1,即a<-2,则当cosx=-1时,f(x)有最小值g(a)=2(-1-)2--2a-1=1; 若-1≤≤1,即-2≤a≤2,则当cosx=时,f(x)有最小值g(a)=--2a-1; 若>1,即a>2,则当cosx=1时,f(x)有最小值g(a)=2(1-)2--2a-1=1-4a. ∴g(a)= (2)若g(a)=,由所求g(a)的解析式知只能是--2a-1=或1-4a=. 由a=-1或a=-3(舍).由a=(舍). 此时f(x)=2(cosx+)2+,得f(x)max=5. ∴若g(a)=,应a=-1,此时f(x)的最大值是5.
复制答案
考点分析:
相关试题推荐
函数f(x)=manfen5.com 满分网是定义在(-1,1)的奇函数,且f(manfen5.com 满分网)=manfen5.com 满分网
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.
查看答案
已知函数y=Asin(ωx+φ)manfen5.com 满分网,该函数图象上一个最高点坐标为manfen5.com 满分网,与其相邻的对称中心为manfen5.com 满分网
(1)求函数y=Asin(ωx+φ)的解析式;
(2)求函数y=Asin(ωx+φ)的单调增区间.
查看答案
已知函数f(x)=loga(1+x)+loga(1-x)(a>0且a≠1)
(1)判断函数y=f(x)的奇偶性,并说明理由.
(2)求函数y=f(x)的值域.
查看答案
已知-π<x<0,sinx+cosx=manfen5.com 满分网
(1)求sinx•cosx的值并指出角x所处的象限;
(2)求tanx的值.
查看答案
已知θ为第四象限角,tan(π+θ)=-2.
(1)化简manfen5.com 满分网
(2)求(1)中式子的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.