满分5 > 高中数学试题 >

在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,y...

在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,对一切正整数n,点Pn在函数
y=3x+manfen5.com 满分网的图象上,且Pn的横坐标构成以-manfen5.com 满分网为首项,-1为公差的等差数列{xn}.
(Ⅰ)求点Pn的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记与抛物线Cn相切于点Dn的直线的斜率为Kn,求manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网的值.
(I)根据等差数列的通项公式可求得xn,进而代入直线方程求得yn,则点P的坐标可得. (II)先设出Cn的方程,把D点代入求得a,进而对函数进行求得求得切线的斜率,即kn的表达式,进而用裂项法求得 【解析】 (1)∵, ∴. ∴. (2)∵Cn的对称轴垂直于x轴,且顶点为Pn, ∴设Cn的方程为 . 把Dn(0,n2+1)代入上式,得a=1, ∴Cn的方程为y=x2+(2n+3)x+n2+1. ∵kn=y'|x=0=2n+3, ∴, ∴= =.
复制答案
考点分析:
相关试题推荐
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;
(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.

manfen5.com 满分网 查看答案
已知函数f(x)=manfen5.com 满分网sin2x+2cos2x+m在区间[0,manfen5.com 满分网]上的最大值为6
(1)求常数m的值及函数f(x)图象的对称中心;
(2)作函数f(x)关于y轴的对称图象得函数f1(x)的图象,再把函数f1(x)的图象向右平移manfen5.com 满分网个单位得函数f2(x)的图象,求函数f2(x)的单调递减区间.
查看答案
已知F1(-c,0),F2(c,0)为椭圆manfen5.com 满分网的两个焦点,P为椭圆上一点且manfen5.com 满分网,则此椭圆离心率的取值范围是    查看答案
下列命题中
①若|manfen5.com 满分网manfen5.com 满分网|=|manfen5.com 满分网|•|manfen5.com 满分网|,则manfen5.com 满分网manfen5.com 满分网
manfen5.com 满分网=(-1,1)在manfen5.com 满分网=(3,4)方向上的投影为manfen5.com 满分网
③若△ABC中,a=5,b=8,c=7则manfen5.com 满分网=20;
④若非零向量manfen5.com 满分网manfen5.com 满分网满足|manfen5.com 满分网+manfen5.com 满分网|=manfen5.com 满分网,则|2manfen5.com 满分网|>|manfen5.com 满分网+2manfen5.com 满分网|.
其中真命题是    查看答案
若△ABC的周长等于20,面积是manfen5.com 满分网,A=60,则BC边的长是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.