满分5 > 高中数学试题 >

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y+2)2=4,圆C2:(...

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y+2)2=4,圆C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,试求出所有满足条件的点P的坐标;
(2)若斜率为正数的直线l平分圆C1,求证:直线l与圆C2总相交.
(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,可设出P点的坐标,由直线与圆相切的性质及题设条件得到关于所引入参数的方程,解方程,有几个解,则满足条件的点P的坐标就有几个. (2)斜率为正数的直线l平分圆C1,故可引入参数k(>0),用待定系数法表示出直线的方程,然后求出圆心到直线的距离,与圆的半径作比较即可确定直线与圆的位置关系是相交. 【解析】 (1)由题设条件,圆C1的圆心坐标(3,-2),半径为2,圆C2的圆心坐标(-m,-m-5),半径为 ∵过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2, ∴PC12-4=PC22-(2m2+8m+10) 若点P在X轴上,设P(x,0),将P(x,0)及圆心的坐标代入整理得(2m-6)x=-2m+6,故x=-1, 即P(-1,0) 若点P在Y轴上,可设P(0,y),同理解得y=-1,即P(0,-1) 故满足条件的点P的坐标为(-1,0)或(0,-1) (2)若斜率为正数的直线l平分圆C1,可得此直线过定点(3,-2), 设此直线的方程为y+2=k(x-3),整理得kx-y-3k-2=0 圆C2的圆心到此直线的距离为d== 由于d2-r2=-(2m2+8m+10) = =-m2-2m-1-(m+3)2 =-(m+1)2-(m+3)2<0 (∵k>0) 可得在d<r,即直线l与圆C2总相交
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网,是否存在整式g(n)使得a1+a2+…+an-1=g(n)•(an-1)对不小于2的一切自然数n都成立,并证明你的结论.
查看答案
如图,在正四棱锥P-ABCD中,点M为棱AB的中点,点N为棱PC上的点.
(1)若PN=NC,求证:MN∥平面PAD;
(2)试写出(1)的逆命题,并判断其真假.若为真,请证明;若为假,请举反例.

manfen5.com 满分网 查看答案
如图,在正方体ABCD-A1B1C1D1中,E、F分别是A1D1和A1B1的中点.
(1)求异面直线AE和BF所成角的余弦值;
(2)求平面BDD1与平面BFC1所成二面角的正弦值.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知两点F1(-6,0)、F2(6,0),点P位于第一象限,且manfen5.com 满分网,tan∠PF2F1=2.
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)求以F1、F2为焦点且过点P的双曲线的标准方程.
查看答案
在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程manfen5.com 满分网的曲线为C,关于曲线C有下列命题:
①曲线C是以F1、F2为焦点的椭圆的一部分;
②曲线C关于x轴、y轴、坐标原点O对称;
③若P是上任意一点,则PF1+PF2≤10;
④若P是上任意一点,则PF1+PF2≥10;
⑤曲线C围成图形的面积为30.
其中真命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.