满分5 > 高中数学试题 >

已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(...

已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.
(1)求证:b+c=-1;
(2)求证:c≥3;
(3)若函数f(sinα)的最大值为8,求b、c的值.
本题考查的是不等式的综合应用问题.在解答时: (1)充分利用条件不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.注意分析sinα、2+cosβ的范围,利用夹逼的办法即可获得问题的解答; (2)首先利用(1)的结论对问题进行化简化为只有参数c的函数,再结合条件不论β为何实数,恒有f(2+cosβ)≤0,即可获得问题的解答; (3)首先对函数进行化简配方,然后利用二次函数的性质结合自变量和对称轴的范围即可获得问题的解答. 【解析】 (1)证明:∵|sinα|≤1且f(sinα)≥0恒成立,可得f(1)≥0. 又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立,可得f(1)≤0, ∴f(1)=0, ∴1+b+c=0,∴b+c=-1. (2)证明:∵b+c=-1,∴b=-1-c, ∴f(x)=x2-(1+c)x+c=(x-1)(x-c). 又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立 ∴x-c≤0,即c≥x恒成立. ∴c≥3. (3)∵f(sinα)=sin2α-(1+c)sinα+c=(sinα-)2+c-()2, ∵ ∴当sinα=-1时,f(sinα)的最大值为1-b+c. 由1-b+c=8与b+c=-1联立, 可得b=-4,c=3. 即b=-4,c=3.
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网
(1)求函数f(x)的单调区间、极值.
(2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围.
查看答案
已知关于x的不等式(k2+4k-5)x2+4(1-k)x+3>0对任何实数x都成立,求实数k的取值范围.
查看答案
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假.求实数m的取值范围.
查看答案
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2manfen5.com 满分网.证明:构造函数f(x)=(x-a12+(x-a22=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a22-8≤0,所以a1+a2manfen5.com 满分网.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为    查看答案
实数x,y满足manfen5.com 满分网,则manfen5.com 满分网的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.