本题要对字母a进行讨论.①a>1时,原函数在[,4]为单调增函数,在根据最大值与最小值的差为3,即可列出关于a的方程即可求解②0<a<1 时,原函数在[,4]为单调减函数,在根据最大值与最小值的差为3,即可列出关于a的方程即可求解
【解析】
①当a>1 时,f(x)=logax 在(0,+∞)上为增函数,
∴在[12,4]上函数f(x)的最小值,最大值分别为: f(x)max=f(4)=loga4,
∴,
即loga4+loga2=loga8=3,
而log28=3,
∴a=2;
②当0<a<1 时,f(x)=logax 在(0,+∞)上为减函数,
∴在[12,4]上函数f(x) 的最小值、最大值分别为 f(x)min=f(4)=loga4,,
∴,
即,
而
∴;
综上所述a=2 或.