满分5 > 高中数学试题 >

已知A,B是椭圆的左,右顶点,B(2,0),过椭圆C的右焦点F的直线交椭圆于点M...

manfen5.com 满分网已知A,B是椭圆manfen5.com 满分网的左,右顶点,B(2,0),过椭圆C的右焦点F的直线交椭圆于点M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值.
(1)由题设知a=2,b=.由此能求出椭圆C的方程. (2)由点差法知PQ的中垂线交x轴于,设M(x1,y1),N(x2,y2),直线MN:x=my+1与椭圆联立可得(3m2+4)y2+6my-9=,0,由此能求出三角形MNT的面积的最大值. 【解析】 (1)由题设知a=2,b= 椭圆C的方程 (2)由点差法知PQ的中垂线交x轴于 设M(x1,y1),N(x2,y2),直线MN:x=my+1与椭圆联立可得(3m2+4)y2+6my-9=0 令t=m2+1≥1,则 故
复制答案
考点分析:
相关试题推荐
如图1,在平面内,ABCD是manfen5.com 满分网的矩形,△PAB是正三角形,将△PAB沿AB折起,使PC⊥BD,如图2,E为AB的中点,设直线l过点C且垂直于矩形ABCD所在平面,点F是直线l上的一个动点,且与点P位于平面ABCD的同侧.
(1)求证:PE⊥平面ABCD;
(2)设二面角F-PB-D的平面角为θ,若θ≥45°,求线段CF长的取值范围.manfen5.com 满分网
查看答案
已知数列{an}中,a1=1,anan+1=2n(n∈N*
(1)求数列{an}通项an
(2)数列的前n项和为Sn,若3(1-kan)≤Sn•an对任意n∈N*恒成立,求k的最小值..
查看答案
己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=manfen5.com 满分网
(I )求角C大小;
(II)当c=1时,求a2+b2的取值范围.
查看答案
已知函数f(x)=|x2+2x-1|,若a<b<-1,且f(a)=f(b),则ab+a+b的取值范围是    查看答案
设实数x,y满足条件manfen5.com 满分网,则manfen5.com 满分网的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.