满分5 > 高中数学试题 >

已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜...

已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(1)求实数a的值;
(2)若k∈Z,且manfen5.com 满分网对任意x>1恒成立,求k的最大值;
(3)当n>m≥4时,证明(mnnm>(nmmn
(1)求出f(x)的导函数,把x=e代入导函数中求出的导函数值即为切线方程的斜率,根据切线斜率为3列出关于a的方程,求出方程的解即可得到a的值; (2)将原来的恒成立问题转化为研究函数的最值问题,研究区间(1,+∞)上的最值问题,先求出函数的极值,研究极值点左右的单调性,最后确定出最小值,从而得出k的最大值. (3)由(2)知,是[4,+∞)上的增函数,从而有当n>m≥4时,由此式即可化简得到ln(nmnmm)>ln(mmnnn. (1)【解析】 因为f(x)=ax+xlnx,所以f'(x)=a+lnx+1.(1分) 因为函数f(x)=ax+xlnx的图象在点x=e处的切线斜率为3, 所以f'(e)=3,即a+lne+1=3. 所以a=1.(2分) (2)【解析】 由(1)知,f(x)=x+xlnx, 所以对任意x>1恒成立,即对任意x>1恒成立.(3分) 令, 则,(4分) 令h(x)=x-lnx-2(x>1), 则, 所以函数h(x)在(1,+∞)上单调递增.(5分) 因为h(3)=1-ln3<0,h(4)=2-2ln2>0, 所以方程h(x)=0在(1,+∞)上存在唯一实根x,且满足x∈(3,4). 当1<x<x时,h(x)<0,即g'(x)<0,当x>x时,h(x)>0,即g'(x)>0,(6分) 所以函数在(1,x)上单调递减,在(x,+∞)上单调递增. 所以.(7分) 所以k<[g(x)]min=x∈(3,4). 故整数k的最大值是3.(8分) (3)证明:由(2)知,是[4,+∞)上的增函数,(9分) 所以当n>m≥4时,.(10分) 即n(m-1)(1+lnn)>m(n-1)(1+lnm). 整理,得mnlnn+mlnm>mnlnm+nlnn+(n-m).(11分) 因为n>m,所以mnlnn+mlnm>mnlnm+nlnn.(12分) 即lnnmn+lnmm>lnmmn+lnnn. 即ln(nmnmm)>ln(mmnnn).(13分) 所以(mnn)m>(nmm)n.(14分) 证明2:构造函数f(x)=mxlnx+mlnm-mxlnm-xlnx,(9分) 则f'(x)=(m-1)lnx+m-1-mlnm.(10分) 因为x>m≥4,所以f'(x)>(m-1)lnm+m-1-mlnm=m-1-lnm>0. 所以函数f(x)在[m,+∞)上单调递增.(11分) 因为n>m,所以f(n)>f(m). 所以mnlnn+mlnm-mnlnm-nlnn>m2lnm+mlnm-m2lnm-mlnm=0.(12分) 即mnlnn+mlnm>mnlnm+nlnn. 即lnnmn+lnmm>lnmmn+lnnn. 即ln(nmnmm)>ln(mmnnn).(13分) 所以(mnn)m>(nmm)n.(14分)
复制答案
考点分析:
相关试题推荐
定义:若数列{An}满足An+1=An2,则称数列{An}为“平方数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记manfen5.com 满分网,求数列{bn}的前n项之和Sn,并求使Sn>4020的n的最小值.
查看答案
世界大学生运动会圣火台如图所示,圣火盆是半径为1m的圆,并通过三根长度相等的金属支架PA1、PA2、PA3(A1、A2、A3是圆上的三等分点)将其水平放置,另一根金属支架PQ垂直于地面,已知圣火盘的圆心O到地面的距离为manfen5.com 满分网m,四根金属支架的总长度为ym.
(1)设∠OPA3=θ(rad),请写出y关于θ的函数解析式,并写出函数的定义域;
(2)试确定点P的位置,使四根金属支架的总长度最短.(参考数值:manfen5.com 满分网,其中α≈1.23)

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网.直线x=t(t>0)与曲线E交于不同的两点M,N,以线段MN为直径作圆C,圆心为C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,且△ABC的面积为manfen5.com 满分网,求圆C的标准方程.
查看答案
一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆柱上底面圆O的圆周上,EA⊥平面ABC,AB⊥AC,AB=AC,其正视图、侧视图如图所示.
manfen5.com 满分网
(1)求证:AC⊥BD;
(2)求锐二面角A-BD-C的大小.
查看答案
某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.
manfen5.com 满分网
(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(II)根据频率分布直方图填写下面2x2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式)乙班(B方式)总计
成绩优秀
成绩不优秀
总计
附:K2=manfen5.com 满分网(此公式也可写成x2=manfen5.com 满分网
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.