满分5 > 高中数学试题 >

设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax成...

设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.
令g(x)=(x+1)ln(x+1)-ax对g(x),求导得g'(x)=ln(x+1)+1-a,令g'(x)=0⇒x=ea-1-1, 当a≤1时,对所有的x>0都有g'(x)>0,所以g(x)在[0,+∞)上为单调增函数,又g(0)=0,所以对x≥0时有g(x)≥g(0),即当a≤1时都有f(x)≥ax,所以a≤1成立,当a>1时,对于0<x<ea-1-1时,g'(x)<0,所以g(x)在(0,ea-1-1)上是减函数,又g(0)=0,所以对于0<x<ea-1-1有g(x)<g(0),即f(x)<ax,所以当a>1时f(x)≥ax不一定成立 综上所述即可得出a的取值范围. 解法一: 令g(x)=(x+1)ln(x+1)-ax, 对函数g(x)求导数:g′(x)=ln(x+1)+1-a 令g′(x)=0,解得x=ea-1-1, (i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数, 又g(0)=0,所以对x≥0,都有g(x)≥g(0), 即当a≤1时,对于所有x≥0,都有f(x)≥ax. (ii)当a>1时,对于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)是减函数, 又g(0)=0,所以对0<x<ea-1-1,都有g(x)<g(0), 即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立. 综上,a的取值范围是(-∞,1]. 解法二: 令g(x)=(x+1)ln(x+1)-ax, 于是不等式f(x)≥ax成立即为g(x)≥g(0)成立. 对函数g(x)求导数:g′(x)=ln(x+1)+1-a 令g′(x)=0,解得x=ea-1-1, 当x>ea-1-1时,g′(x)>0,g(x)为增函数, 当-1<x<ea-1-1,g′(x)<0,g(x)为减函数, 所以要对所有x≥0都有g(x)≥g(0)充要条件为ea-1-1≤0. 由此得a≤1,即a的取值范围是(-∞,1].
复制答案
考点分析:
相关试题推荐
已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.
(Ⅰ)求m与n的关系表达式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.
查看答案
已知曲线C:y=x3-3x2,直线l:y=-2x
(1)求曲线C与直线l围成的区域的面积;
(2)求曲线y=x3-3x2(0≤x≤1)与直线l围成的图形绕x轴旋转一周所得的旋转体的体积.
查看答案
(1)把7个相同的球放入四个相同的盒子,每个盒子至少有一个球的不同放法有多少种?
(2)把7个相同的球放入四个不相同的盒子,每个盒子至少有一个球的不同放法有多少种?
(3)把7个不相同的球放入四个不相同的盒子,每个盒子至少有一个球的不同放法有多少种?
查看答案
已知manfen5.com 满分网的展开式中第五项系数与第三项的系数的比是10,求展开式中
(1)含manfen5.com 满分网的项;
(2)二项式系数最大的项;
(3)系数最大的项和系数最小的项.
查看答案
过点(1,3)且与曲线y=x3+2x相切的直线方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.